APPENDIX F.2

Report of Phase II Subsurface Investigation

Watt Investment Partners Attn: Max Levenstein 2716 Ocean Park Boulevard Suite 2025 Santa Monica, California 90405

REPORT OF PHASE II SUBSURFACE INVESTIGATION 3501 & 3515 OBAMA BOULEVARD 3510 & 3606 EXPOSITION BOULEVARD 3630 & 3644 CRENSHAW BOULEVARD LOS ANGELES, CALIFORNIA

Dear Mr. Levenstein:

Ramboll US Corporation (Ramboll) is pleased to present this report to Watt Investment Partners, LLC ("Watt" or the "Client") to document recent Phase II subsurface investigation activities performed at the properties located at 3510 Exposition Boulevard, 3630 & 3644 Crenshaw Boulevard, and 3501 & 3515 Obama Boulevard (collectively, the "Eastern Parcel") and 3606 Exposition Boulevard (the "Western Parcel"), located in Los Angeles, California (the "Site" or the "facility").

As you are aware, Ramboll recently performed a Phase I Environmental Site Assessment (ESA) of the Site. During the process of conducting the Phase I ESA, environmental issues were identified that warranted further assessment, as described below. This report describes the scope of work completed and the findings of the subsurface investigation performed in response to the findings of the Phase I ESA.

As discussed in detail below, the results of the subsurface investigation showed no contaminants of concern in soil at concentrations exceeding applicable regulatory comparison thresholds. In addition, in regard to soil vapor, no contaminants were detected above applicable regulatory thresholds, with only one exception (at SV-4; discussed below), which detection appears to be sourced from an off-Site impact and to be anomalous and not indicative of Site-wide conditions. Accordingly, based on the information and data generated to date, Ramboll recommends no further action or investigation regarding the environmental condition of the Site.

BACKGROUND AND APPROACH

Based on Ramboll's review of historical sources, agency records, prior reports, and a database report provided by EDR, Inc. (EDR) for the Site, the following key issues of environmental concern and/or human health risk concern were identified in the Phase I ESA: Date: February 26, 2020

Ramboll 5 Park Plaza Suite 500 Irvine, CA 92614 USA

T +1 949 261 5151 F +1 949 261 6202 www.ramboll.com

- Former and potential remaining underground storage tanks (USTs) at the Eastern Parcel, which were related to historical gasoline service station operations;
- Former potential use of the Eastern Parcel for dry-cleaning operations;
- Potential impacts to the Eastern Parcel from an off-Site dry-cleaning facility located to the south of the Eastern Parcel; and
- Potential impacts to the Western Parcel from an off-Site gasoline service station located to the south and east of the Western Parcel.

Certain of the issues identified in connection with the Site during Ramboll's Phase I ESA had been evaluated (or partially evaluated) in a series of Phase II subsurface investigations performed at the Site by Tetra Tech, Inc. (Tetra Tech) in the fall of 2012. Consequently, Ramboll proposed a scope of work for subsurface sampling aimed at addressing remaining data gaps based on the information generated to date and, in certain cases, verifying current subsurface conditions, because more than 6 years had elapsed since Tetra Tech performed its subsurface investigation work at the Site.

During the process of performing the recent Phase I ESA, Ramboll discovered historical information indicating that multiple USTs formerly were present in the western quadrant of the Eastern Parcel, which had not previously been identified. In addition, an empty petroleum-related 280-gallon UST was discovered in the area on January 14, 2016 during general construction activities. A subsurface investigation in this area was not previously conducted by Tetra Tech; however, the entire western portion of the Eastern Parcel was excavated to a depth of approximately 50 feet below ground surface (bgs) as part of the Los Angeles County Metropolitan Transit Authority (MTA's) recent construction of a subway tunnel and station at this location. As such, subsurface investigation in this area is no longer warranted, so none was performed.

Field work activities for the Eastern Parcel were coordinated through and approved by the MTA; Ramboll complied with MTA-specified health and safety requirements during implementation of the Phase II subsurface investigation, which included site-specific training of all field personnel and contractors.

SCOPE OF WORK

Ramboll's Phase II subsurface investigation included the following scope of work, as further described below:

- Performing pre-field activities and mobilization;
- Installing and sampling three dual-nested soil vapor probes on the Western Parcel and four dual-nested soil vapor probes on the Eastern Parcel to evaluate potential subsurface impacts from historical dry-cleaning and historical and existing gas station operations; and
- Installing and sampling two soil borings in the suspected area of former UST locations in the south-central portion of the Eastern Parcel.

Drilling and sampling activities were performed by Ramboll field personnel working under the supervision of a California Registered Professional Geologist. Sampling locations are provided in Figures 1 and 2.

Pre-Field Activities and Mobilization

Prior to the start of field work, Ramboll prepared a Site-specific Health and Safety Plan (HASP). The HASP was designed to minimize exposure of Ramboll's field personnel to potentially hazardous

materials. All field personnel involved in the project were required to implement the procedures presented in the HASP while conducting the planned fieldwork.

Prior to initiation of drilling activities, Ramboll marked the planned investigation locations. Ramboll field personnel selected each soil boring and soil vapor probe location to ensure that no work would be conducted within the dripline of the protected tree on the Eastern Parcel. Ramboll also contacted Underground Service Alert (USA) to mark the locations of all major utilities at the Site boundaries (Ticket number B193090751). In addition to the services provided by USA, Spectrum Geophysics, a private utility locating company located in Chatsworth, California, was contracted to conduct a geophysical survey in the immediate vicinities of the proposed soil boring and vapor probe locations to clear boring locations from subsurface structures and/or underground obstructions.

Ramboll also followed Los Angeles County Department of Environmental Health (LACDEH) drilling permit procedures and obtained drilling permits for the proposed soil borings; permit number SR0201619 was approved/issued by the LACDEH on November 7, 2019 (Attachment A).

Soil Boring Installation and Sampling

At the request of the MTA, prior to the start of any drilling, a work area of approximately 25 feet by 25 feet was cordoned off at each soil boring/soil vapor probe location to preclude access to the work area from unauthorized personnel. Each area was cordoned off for the duration of the drilling, soil sampling, and/or vapor probe installation activity conducted at that location. Work areas were delineated with cones and, where appropriate, caution tape, to deter members of the public and those involved in ongoing construction at the Eastern Parcel portion of the Site from entering the work areas.

On December 18, 2020, Ramboll subcontracted with BC2 Environmental (BC2), a California-licensed driller located in Orange, California, to advance soil borings SB-1 and SB-2 in the suspected area of the former UST locations on the south-central portion of the Eastern Parcel (see Figure 1). The first five feet at each location was advanced using a hand auger and then completed to a depth of approximately 20 feet bgs using a Geoprobe direct push technology (DPT) drill rig. Soil samples were collected in acetate sleeves at a continuous interval starting at 5 feet bgs and were screened every two feet for total volatile organic compounds (VOCs) using a photoionization detector (PID). Soil lithology was classified in general accordance with the Unified Soil Classification System (USCS) by Ramboll field personnel and field evidence of impacted soil, such as discoloration or odor, was noted on the soil boring log.

Two soil samples from each soil boring, at depths of approximately 12 and 20 feet bgs in soil boring SB-1 and approximately 10 and 19 feet bgs in soil boring SB-2, were selected for laboratory analysis based on field evidence of contamination (i.e. elevated PID concentrations and soil discoloration). The soil samples were analyzed for VOCs, full-range (gasoline-, diesel fuel-, and oil-range) total petroleum hydrocarbons (TPH), and metals (excluding mercury) in accordance with USEPA Methods 8260B, 8015 modified, and 6010, respectively. On completion of sampling, the soil borings were abandoned by grouting the borehole to the surface and patching the holes to match the existing ground surface.

All on-Site drilling and sampling activities complied with MTA and City of Los Angeles noise mitigation requirements of less than 75 A-weighted decibels (dbA) at the Site boundary. A sound level meter was used to measure decibel (sound) levels prior to the start of work to establish "ambient noise,"¹ then again when maximum noise occurred (during drilling activities), and again on completion of drilling activities. During the collection of sound level measurements, the microphone was placed approximately 4 to 5 feet above the ground and approximately 10 feet or more from the nearest reflective surface. Ambient noise at the site boundary was measured to be approximately 60 to 65 dbA, due to the Site's proximity to the busy intersection of Exposition Boulevard and Crenshaw Boulevard. During drilling activities, noise levels at the site boundary remained in the same general range as the ambient noise level and did not exceed 72 dbA. Upon completion of drilling, noise levels returned to the original ambient noise level observed. Field staff and others in close proximity to the drill rig were provided with disposable ear plugs for the duration of drilling activities.

Prior to drilling and between the advancement of each soil boring, drilling and sampling equipment was decontaminated to minimize the potential for cross-contamination. Investigation derived waste (IDW) generated during field activities were placed in a 55-gallon Department of Transportation (DOT)-rated drum, labeled, and stored on-Site pending off-Site disposal.

Soil Vapor Probe Installation and Sampling

On December 18 and 19, 2019, Ramboll subcontracted with BC2 to advance three soil borings on the Western Parcel (SV-1 through SV-3; see Figure 2) and four soil borings on the Eastern Parcel (SV-4 through SV-7; see Figure 1) for the purpose of installing dual-nested soil vapor probes. At the Western Parcel, the dual-nested soil vapor probes were installed along the Western Parcel boundaries adjoining the gas station property to the south (one soil vapor probe) and to the east (two soil vapor probes), to evaluate potential subsurface impacts from off-Site gas station operations. At the Eastern Parcel, one soil dual-nested soil vapor probe was located in the potential UST area, two dual-nested soil vapor probes were installed along the southeastern Site boundary to assess potential impacts to the Eastern Parcel from an off-Site dry cleaner located to the south of the Eastern Parcel.

The first five feet of each boring was advanced using a hand auger, and then completed to a depth of approximately 15 feet bgs using a Geoprobe DPT rig. Soil samples were collected in acetate sleeves at a continuous interval starting at 5 feet bgs and was screened every two feet for VOCs using a PID. Soil lithology was classified in general accordance with the USCS by Ramboll field personnel and field evidence of impacted soil, such as discoloration or odor, was noted on the soil boring log.

Soil vapor probes were installed at depths of approximately 5 and 15 feet bgs and were completed at the surface with flush-mounted well boxes. Soil vapor probes were installed in general accordance with the "Advisory – Active Soil Gas Investigations" (Advisory), jointly developed by the California Environmental Protection Agency (Cal/EPA)/Department of Toxic Substances Control (DTSC)/California Regional Water Quality Control Board – Los Angeles and San Francisco Regions (LARWQCB/SFRWQCB) and dated July 2015.

¹ According to the City of Los Angeles Municipal Code Chapter XI, Noise Regulations, ambient noise is defined as "the composite of noise from all sources near and far in a given environment, exclusive of occasional and transient intrusive noise sources and of the particular noise source or sources to be measured. Ambient noise shall be averaged over a period of at least 15 minutes at a location and time of day comparable to that during which the measurement is taken of the particular noise source being measured."

All on-Site drilling activities on the Eastern Parcel complied with MTA and City of Los Angeles noise mitigation requirements, as described in the section above. Ambient noise at the site boundary of the Western Parcel was observed to be approximately 55 to 60 dbA, due to the Site's proximity to the busy intersection of Exposition Boulevard and Crenshaw Boulevard. During drilling activities, noise levels increased slightly but did not exceed 70 dbA at the northern boundary of the Western Parcel. Upon completion of drilling, noise levels returned to the original ambient noise level observed. Field staff and others in close proximity to the drill rig were provided with disposable ear plugs for the duration of the drilling activities.

Prior to drilling and between the advancement of each soil boring, drilling and sampling equipment was decontaminated to minimize the potential for cross-contamination. IDW generated during these drilling activities were placed in a 55-gallon DOT-rated drum, labeled, and stored on-Site pending off-Site disposal.

On January 2, 2020, following a 48-hour equilibration period as recommended by the Advisory, Ramboll subcontracted with Jones Environmental Laboratory (Jones) of Santa Fe Springs, California, a state-certified mobile laboratory, to collect and analyze the soil vapor samples. Per the Advisory, a shut-in test was conducted at each soil vapor probe location followed by purging a total of three purge volumes from each vapor probe. Next, soil vapor probe samples were collected in vapor-tight syringes and analyzed in an on-Site mobile laboratory operated by Jones for VOCs using USEPA Method 8260B. In addition to the primary samples, one replicate soil vapor sample was collected for quality control purposes.

Within the 15-foot bgs probes at SV-4 through SV-7 on the Eastern Parcel, "no flow" conditions were encountered. No flow conditions occur when a sampling rate greater than 10 milliliters per minute (mL/min) cannot be maintained without applying a vacuum greater than 100 inches of water to the sampling train. The sampling train is left at a vacuum for no less than three minutes. If the vacuum does not subside appreciably after three minutes, the sample location is concluded to be a no flow sample. Due to the no flow conditions, samples were not collected from the 15-foot bgs probes at the four soil vapor probe locations on the Eastern Parcel.

At each soil vapor probe location, a shut-in test was conducted and a tracer vapor mixture of n-pentane, n-hexane, and n-heptane was placed at the tubing-surface interface of each probe before sampling. These compounds were analyzed along with the other VOCs to evaluate whether any surface leaks occurred into the subsurface due to improper installation or sealing of the probes. None of the compounds contained in the tracer vapor mixture was detected above laboratory reporting limits (RLs) in any of the soil vapor samples, indicating that surface leakage did not occur.

On January 3, 2020, after completion of soil vapor probe sampling activities, BC2 abandoned the soil vapor probes by removing the traffic-rated boxes, pulling the remaining tubing from the boreholes, backfilling the void with hydrated bentonite, and sealing the holes to match the existing ground surface; thus returning the surface of the Site to its original state.

FINDINGS AND RESULTS

In all soil borings, soils encountered consisted predominantly of silt or silt with sand to approximately 7 feet bgs, followed by a layer of sand to approximately 10 feet bgs, in turn followed by clay or clay with sand to approximately 15 feet bgs. At soil borings SB-1 and SB-2, where the borings were advanced to a total depth of approximately 20 feet bgs, an additional sand layer was observed at approximately 19 to 20 feet bgs.

PID measurement of soil samples collected during soil boring advancement ranged from 0.0 parts per million (ppm) to 2.3 ppm. The highest PID readings were observed on the Western Parcel along the site boundary shared with the gas station.

Analytical results for the soil samples are summarized on Tables 1a (VOCs and TPH) and 1b (metals). Analytical results for the soil vapor samples are provided in Table 2 (VOCs). Complete laboratory analytical reports are included in Attachment B.

Soil

Soil sample results were compared to USEPA Regional Screening Levels (RSLs) in a residential land use scenario and to DTSC-modified screening levels in a residential land use scenario (where such exist) (see Tables 1a and 1b).

ТРН

• No TPH was detected above the associated laboratory reporting limits in any of the soil samples analyzed (i.e., the results were "non-detect").

VOCs

- Benzene was detected in soil boring SB-1 at 12 feet bgs and soil boring SB-2 at 10 feet bgs at concentrations of 15 and 3.2 micrograms per kilogram (µg/kg), respectively, both below the applicable regulatory thresholds;
- Ethylbenzene was detected in soil boring SB-1 at 12 feet bgs at a concentration of 2.0 µg/kg, below the applicable regulatory thresholds;
- Toluene was detected in soil boring SB-1 at 12 feet bgs at a concentration of 13 μ g/kg, below the applicable regulatory thresholds; and
- m,p-Xylenes were detected in soil boring SB-1 at 12 feet bgs at a concentration of 2.6 µg/kg, below the applicable regulatory thresholds.

Metals

• Metals detected in at least one of the soil samples analyzed included arsenic, barium, chromium, cobalt, copper, lead, nickel, vanadium, and zinc; however, all metals were detected at concentrations below their respective applicable regulatory thresholds.

Soil Vapor

Soil vapor sample results were compared to both residential and commercial soil vapor screening levels for a future building calculated using DTSC Office of Human and Ecological Risk (HERO), Human Health Risk Assessment (HHRA) Note 3 (HERO Note 3; Cal/EPA, April 2019) and/or USEPA RSLs (USEPA, June 2017).²

Tetrachloroethene (PCE) was detected in 9 of the 10 soil vapor samples collected at concentrations ranging from 8 micrograms per cubic meter (µg/m³) to 1,570 µg/m³, with one location (SV-4 at 5 feet bgs) below the commercial screening threshold (but above the current residential screening threshold);

² Soil gas screening levels were the ratio of the DTSC-Modified RSLs (Cal/EPA 2019) or USEPA RSLs (USEPA 2019) for indoor air to the corresponding default attenuation factors as recommended by Cal/EPA (2011).

- Toluene was detected in 3 of the 10 soil vapor samples collected (SV-2, SV-3, SV-7) at concentrations ranging from 12 µg/m³ (SV-2 at 15 feet) to 54 µg/m³ (SV-3 at 5 feet) with no samples exceeding applicable screening thresholds;
- Trichloroethene (TCE) was detected in 3 of the 10 soil vapor samples collected (SV-1, SV-2, SV-4) at concentrations ranging from 12 μg/m³ (SV-1 at 15 feet) to 40 μg/m³ (SV-2 at 15 feet). None of the samples exceeded applicable screening thresholds;
- 1,2,4-Trimethylbenzene was detected in one soil vapor sample (SV-3 at 15 feet) at a concentration of 16 μg/m³, which is below the applicable screening threshold;
- m,p-Xylenes were detected in one soil vapor sample (SV-3 at 15 feet) at a concentration of 42 µg/m,³ which is below the applicable screening threshold; and
- o-Xylene was detected in one soil vapor sample (SV-3 at 15 feet) at a concentration of 18 µg/m³ which is below the applicable screening threshold.

At those locations where deeper soil vapor samples were able to be collected (SV-1, SV-2, SV-3), there was no significant difference between sample results for the 5-foot bgs sample and the 15-foot bgs sample collected at the same location.

Based on the foregoing, no compounds were detected in the soil samples collected at the Site in concentrations exceeding applicable regulatory comparison thresholds. In soil vapor, only one sample (SV-4) exceeded the applicable residential comparison threshold for one compound, PCE. It is noted that this sample was located in the southeastern portion of the Eastern Parcel, to the north of Obama Boulevard. This location is situated across the street from a former dry cleaner with known subsurface impacts. Therefore, the detection of PCE at this location is likely associated with an off-Site source. However, the detection did not exceed the associated commercial comparison threshold for PCE, which is consistent with the proposed use of the Site where no residential units are planned for the ground level. The source of the other detections of PCE in soil vapor is not known. Although it was originally speculated that a dry cleaner may have been located in the central portion of the Eastern Parcel, Ramboll ultimately found no supporting information to confirm that a dry cleaner existed at that location, and therefore recommends no further action regarding this issue.

Regardless, apart from the single elevated concentration of PCE detected in SV-4 (as discussed above), all other detected concentrations of PCE in soil vapor at the site were present at concentrations below the applicable residential comparison threshold. Further, based on the totality of data compiled for the Site, Ramboll concludes that the lone exceedance appears to be anomalous and is not representative of Site-wide conditions. Accordingly, Ramboll recommends no further action or investigation regarding this issue and no further action or investigation regarding the environmental condition of the Site. However, Ramboll recommends that a soil management plan be prepared and implemented as part of grading and construction activities in the event that unforeseen impacts and/or features are encountered.

CLOSURE

Ramboll appreciates the opportunity to be of continued service to you on this project. If you have any questions or need further information, please contact the undersigned.

Very truly yours,

Leo M. Rebele Principal

949 798 3604

Irebele@ramboll.com

JD:gw

Attachments

ΡG Re Wal

Senior Managing Consultant

949 798 3693 rwale@ramboll.com

Jennifer Dishon, EIT

Senior Consultant

213 943 6321 jdishon@ramboll.com

TABLES

Table 1a. Summary of Volatile Organic Compounds and Total Petroleum Hydrocarbons in Soil Samples

Watt Investment Partners 3510 Exposition Boulevard Los Angeles, California

				Volatile Organic Compounds						
Boring Location	Sample Depth (feet)	Sample Date	Н	Benzene	Ethylbenzene	Toluene	m,p-Xylenes			
Units			mg/kg	μg/kg						
Residenti fro	al Soil Scre om USEPA F	ening Level RSL ¹	Various	1,200	5,800	4,900,000	550,000/560,000			
Residenti from I	al Soil Scre DTSC HERO	ening Level Note 3 ²	Various	330	-	1,100,000	-			
SB-1	12	12/18/2019	< 1.0	15	2.0	13	2.6			
50-1	20	12/18/2019	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0			
SB_2	10	12/18/2019	< 1.0	3.2	< 2.0	< 2.0	< 2.0			
50-2	19	12/18/2019	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0			

Notes:

¹ USEPA Regional Screening Levels (RSLs; November 2019)

² California Department of Toxic Substances Control Office of Human and Ecological Risk (HERO), Human Health Risk Assessment (HHRA) Note 3 (April 2019 update)

mg/kg - milligrams per kilogram

µg/kg - micrograms per kilogram

TPH - total petroleum hydrocarbons

USEPA - United States Environmental Protection Agency

VOC - volatile organic compounds

Samples analyzed for TPH by USEPA Method 8015M and VOCs by USEPA Method 8260B.

ND - not detected above laboratory reporting limit

< X - not detected above laboratory reporting limit

Los Angeles, California

				Metals														
Boring Location	Sample Depth (feet)	Sample Date	Antimony	Arsenic ^a	Barium	Beryllium	Cadmium	Chromium ^b	Cobalt	Copper	Lead	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
Units mg/kg																		
Residential S from	Soil Screeni USEPA RSL	ng Level	31	0.68	15,000	160	71	120,000/0.30	23	3,100	400	390	1,500	390	390	0.78	390	23,000
Residential Soil DTSC H	l Screening HERO Note 3	Level from 3 ²	N/A	0.11	N/A	1,600	910	N/A/0.30	N/A	N/A	80	N/A	15,000	N/A	N/A	0.78	N/A	N/A
SB_1	12	12/18/2019	< 10	< 0.50	150	< 1.0	< 1.0	18	8.8	14	3.8	< 5.0	12	< 0.50	< 1.0	< 5.0	46	44
	20	12/18/2019	< 10	< 0.50	150	< 1.0	< 1.0	12	5.6	< 3.0	< 3.0	< 5.0	6.0	< 0.50	< 1.0	< 5.0	35	25
SB-2	10	12/18/2019	< 10	0.98	120	< 1.0	< 1.0	13	7.8	< 3.0	< 3.0	< 5.0	8.8	< 0.50	< 1.0	< 5.0	39	37
50-2	19	12/18/2019	< 10	< 0.50	130	< 1.0	< 1.0	15	7.7	< 3.0	< 3.0	< 5.0	9.3	< 0.50	< 1.0	< 5.0	40	34

Notes:

¹ USEPA Regional Screening Levels (RSLs; November 2019)

² California Department of Toxic Substances Control Office of Human and Ecological Risk (HERO), Human Health Risk Assessment (HHRA) Note 3 (April 2019 update)

^a Arsenic occurs naturally in soil. An evaluation of arsenic soil data from school properties in Southern California found arsenic concentrations ranging from 0.15 mg/kg to 20 mg/kg, with an upper-bound background arsenic concentration of 12 mg/kg (Chernoff G, Bosan, W, Oudiz D. 2008. Determination of a Southern California Regional Concentration in Soil). Arsenic concentrations collected at the site were conservatively screened against 12 mg/kg.

^b Chromium RSLs are listed as Chromium III/Chromium VI

mg/kg - milligrams per kilogram

< X - not detected above laboratory reporting limit

USEPA - United States Environmental Protection Agency

Samples analyzed for metals by USEPA Methods 6010B/7471A and 8081A.

N/A - not applicable

Table 2. Summary of VOCs in Soil Vapor Samples

Watt Investment Partners Exposition Boulevard Los Angeles, California

Bori	ng Location	Sample Depth (feet)	Sample Date	Tetrachloroethene	Toluene	Trichloroethene	1,2,4- Trimethylbenzene	m,p-Xylene	o-Xylene
Units					۲đ	/ m ³			
Commercial Soil Vapor Screening Level for Future Building ¹			4,000	2,600,000	6,000	520,000	880,000	880,000	
Residential Soil Vapor Screening Level for Future Building ¹			460	310,000	480	63,000	100,000	100,000	
u	SV-1	5	1/2/2020	9	< 8	< 8	< 8	< 16	< 8
sitio rd	501	15	1/2/2020	10	< 8	12	< 8	< 16	< 8
cpos eva	SV-2	5	1/2/2020	13	< 8	< 8	< 8	< 16	< 8
5 Ex oul	512	15	1/2/2020	13	12	40	< 8	< 16	< 8
B B	SV-3	5	1/2/2020	< 8	54	< 8	< 8	< 16	< 8
ε	313	15	1/2/2020	8	< 8	< 8	16	42	18
p		5	1/2/2020	1,570	< 8	22	< 8	< 16	< 8
eva	SV-4		1/2/2020	1,550	< 8	13	< 8	< 16	< 8
onlo		15	1/2/2020			Ν	S		
n B	SV-5	5	1/2/2020	41	< 8	< 8	< 8	< 16	< 8
sitio		15	1/2/2020			N	S	-	
sod	SV-6	5	1/2/2020	18	< 8	< 8	< 8	< 16	< 8
) Ex		15	1/2/2020		1	Ν	S		
510	SV-7	5	1/2/2020	37	22	< 8	< 8	< 16	< 8
m 30-7		15	1/2/2020			Ν	S		

Notes:

¹ California Department of Toxic Substances Control Office of Human and Ecological Risk (HERO), Human Health Risk Assessment (HHRA) Note 3 (April 2019 update)

µg/m³ - micrograms per cubic meter

USEPA - United States Environmental Protection Agency

VOC - volatile organic compound

Samples analyzed for VOCs by USEPA Method 8260B.

NS - not sampled due to no flow conditions

< X - not detected above laboratory reporting limit

Bold - detections above laboratory reporting limit

Highlighted values denote that compounds were reported above the residential screening level

FIGURES

DRAFTED BY: J. Dishon

DATE: 6/13/2019

Z:\01_Projects_Phase_I\Watt Investments\Exposition\20190613_Phase II Proposals\Figure 1 - Proposed Soil Vapor Sample Locations_3606 Exposition.mxd

ATTACHMENT A PERMIT NUMBER SR0201619

ENVIRONMENTAL HEALTH

Drinking Water Program

5050 Commerce Drive, Baldwin Park, CA 91706

Telephone: (626) 430-5420 • http://publichealth.lacounty.gov/eh/ep/dw/dw_main.htm

Work Plan Approval

WORK SITE ADDRESS	CITY	ZIP	EMAIL ADDRESS
3644 Crenshaw Blvd.	Los Angeles	90016	jdishon@ramboll.com

NOTICE:

- WORK PLAN APPROVALS ARE VALID FOR 180 DAYS. 30 DAY EXTENSIONS OF WORK PLAN APPROVALS ARE CONSIDERED ON AN INDIVIDUAL (CASE-BY-CASE) BASIS AND MAY BE SUBJECT TO ADDITIONAL PLAN REVIEW FEES (HOURLY RATE AS APPLICABLE).
- WORK PLAN MODIFICATIONS MAY BE REQUIRED IF WELL AND GEOLOGIC CONDITIONS ENCOUNTERED AT THE SITE INSPECTION ARE FOUND TO DIFFER
 FROM THE SCOPE OF WORK PRESENTED TO THE DEPARTMENT OF PUBLIC HEALTH—DRINKING WATER PROGRAM.
- WORK PLAN APPROVALS ARE LIMITED TO COMPLIANCE WITH THE CALIFORNIA WELL STANDARDS AND THE LOS ANGELES COUNTY CODE AND DOES NOT GRANT ANY RIGHTS TO CONSTRUCT, RENOVATE, OR DECOMMISSION ANY WELL. THE APPLICANT IS RESPONSIBLE FOR SECURING ALL OTHER NECESSARY PERMITS SUCH AS WATER RIGHTS, PROPERTY RIGHTS, COASTAL COMMISSION APPROVALS, USE COVENANTS, ENCROACHMENT PERMISSIONS, UTILITY LINE SETBACKS, CITY/COUNTY PUBLIC WORKS RIGHTS OF WAY, ETC.
- THIS PERMIT IS NOT COMPLETE UNTIL ALL OF THE FOLLOWING REQUIREMENTS ARE SIGNED BY THE DEPUTY HEALTH OFFICER. WORK SHALL NOT BE INITIATED WITHOUT A WORK PLAN APPROVAL STAMPED BY THE DEPARTMENT OF PUBLIC HEALTH—DRINKING WATER PROGRAM.

TO BE COMPLETED BY DEPARTMENT OF PUBLIC HEALTH-DRINKING WATER PROGRAM:

X	WORK PLAN APPROVED FOR: 2 Soil Boring/Exp. Hole	PERMIT NUMBER:	SR0201619	DATE:	November 7, 2019			
AC	 ADDITIONAL APPROVAL CONDITIONS: Work plan approval is issued for scope of work submitted to the Drinking Water Program. Any modifications to the scope of work will require additional work plan review. As discussed, please ensure the boring/exploration hole is backfilled within 24 hours of boring construction. Ensure to backfill using a tremie pipe under pressure or equivalent equipment with approved cement grout, proceeding upward from the bottom of the boring/exploration hole. Ensure soil borings are sealed per California Well Standards 74-90 Cement grout mix ratio of 5-6 gallons of water per 94-pound bag of Portland cement. Up to 6% of Bentonite may be added to the cement-based mix. No hydrated Bentonite chips Borings/Exploration holes must comply with all applicable requirements published in the California Well Standards (Bulletins 74-81 and 74-90) and the Los Angeles County Code, Title 11. 							
Please note: We no longer allow soil vapor probes to be installed into a ground water sample boring or borings extended into ground water.								
APF	PROVED BY: Teri Hach 26415 Ca Santa Cla (661) 287	ey, REHS rl Boyer Dr. ırita, Ca 913 -7017	50 Lui	A	reherf			

ATTACHMENT B LABORATORY ANALYTICAL REPORTS

9765 Eton Avenue Chatsworth California 91311 Tel: (818) 998-5547 Fax: (818) 998-7258

January 03, 2020 Rebekah Wale Ramboll (Irvine) 5 Park Plaza, Suite 500 Irvine, CA 92614

Re: Watt Exposition / 1690011671

A598262 / 9L19006

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received on 12/19/19 15:08 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Assurance Program Manual, applicable standard operating procedures, and other related documentation. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report or require additional information please call me at American Analytics.

Sincerely,

Viorel Vasile Operations Manager

Client: Project No: Project Name:	Ramboll (Irvine) 1690011671 Watt Exposition				AA Project Date Recei Date Repo	t No: A598262 ived: 12/19/19 rted: 01/03/20
Sample ID		Laboratory ID	Matrix	TAT	Date Sampled	Date Received
<u>8260B/5035 +C</u>	XYGENATES					
3510-SB-1-12'		9L19006-01	Soil	10	12/18/19 10:30	12/19/19 15:08
3510-SB-1-20'		9L19006-02	Soil	10	12/18/19 10:40	12/19/19 15:08
3510-SB-2-10'		9L19006-03	Soil	10	12/18/19 11:30	12/19/19 15:08
3510-SB-2-19'		9L19006-04	Soil	10	12/18/19 11:40	12/19/19 15:08
CAM Metals Le	ess Hg 6000/7000					
3510-SB-1-12'		9L19006-01	Soil	10	12/18/19 10:30	12/19/19 15:08
3510-SB-1-20'		9L19006-02	Soil	10	12/18/19 10:40	12/19/19 15:08
3510-SB-2-10'		9L19006-03	Soil	10	12/18/19 11:30	12/19/19 15:08
3510-SB-2-19'		9L19006-04	Soil	10	12/18/19 11:40	12/19/19 15:08
Carbon Chain	Characterization 80	<u>15M</u>				
3510-SB-1-12'		9L19006-01	Soil	10	12/18/19 10:30	12/19/19 15:08
3510-SB-1-20'		9L19006-02	Soil	10	12/18/19 10:40	12/19/19 15:08
3510-SB-2-10'		9L19006-03	Soil	10	12/18/19 11:30	12/19/19 15:08
3510-SB-2-19'		9L19006-04	Soil	10	12/18/19 11:40	12/19/19 15:08

Ą

Viorel Vasile Operations Manager

Client: Project No: Project Name: Method:	Ramboll (Irvine) 1690011671 Watt Exposition VOCs & OXYG	ENATES by GC/	MS EPA 5035		AA Project N Date Receive Date Reporte Unit	No: A598262 ed: 12/19/19 ed: 01/03/20 es: ug/kg
Date Sampled: Date Prepared: Date Analyzed: AA ID No: Client ID No: Matrix: Dilution Factor:		12/18/19 12/26/19 12/26/19 9L19006-01 3510-SB-1-12' Soil 1	12/18/19 12/26/19 12/26/19 9L19006-02 3510-SB-1-20' Soil 1	12/18/19 12/26/19 12/26/19 9L19006-03 3510-SB-2-10' Soil 1	12/18/19 12/26/19 12/26/19 9L19006-04 3510-SB-2-19' Soil 1	MRL
8260B/5035 +O	YGENATES (EI	PA 8260B/5035)				
Acetone tert-Amyl-Methyl Benzene Bromobenzene Bromochloromet Bromodichlorome Bromomethane 2-Butanone (MEI tert-Butyl Alcohol sec-Butylbenzene carbon Disulfide Carbon Disulfide Carbon Tetrachlo Chlorobenzene Chloroethane	Ether (TAME) hane ethane K) I (TBA) e e	<100 <5.0 15 <5.0 <5.0 <5.0 <5.0 <50 <50 <50 <5.0 <5.	<100 <5.0 <2.0 <5.0 <5.0 <5.0 <5.0 <50 <50 <5.0 <5.0	<100 <5.0 3.2 <5.0 <5.0 <5.0 <5.0 <50 <5.0 <5.0 <5.0	<100 <5.0 <2.0 <5.0 <5.0 <5.0 <5.0 <50 <50 <5.0 <5.0	100 5.0 2.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5
Chloroform Chloromethane 2-Chlorotoluene 4-Chlorotoluene 1,2-Dibromo-3-cl Dibromochlorom 1,2-Dibromoethane 1,4-Dichlorobenz 1,3-Dichlorobenz	hloropropane ethane ine (EDB) e zene zene	<5.0 <5.0 <5.0 <5.0 <10 <5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0 <10 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0 <10 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0 <10 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	5.0 5.0 5.0 5.0 10 5.0 5.0 5.0 5.0 5.0 5.0

Ą

Viorel Vasile Operations Manager

Client: Project No: Project Name: Method:	Ramboll (Irvine) 1690011671 Watt Exposition VOCs & OXYG	ENATES by GC/	/MS EPA 5035		AA Project I Date Receiv Date Report Uni	No: A598262 ed: 12/19/19 ed: 01/03/20 ts: ug/kg
Date Sampled: Date Prepared: Date Analyzed: AA ID No: Client ID No: Matrix:		12/18/19 12/26/19 12/26/19 9L19006-01 3510-SB-1-12' Soil	12/18/19 12/26/19 12/26/19 9L19006-02 3510-SB-1-20' Soil	12/18/19 12/26/19 12/26/19 9L19006-03 3510-SB-2-10' Soil	12/18/19 12/26/19 12/26/19 9L19006-04 3510-SB-2-19' Soil	
Dilution Factor:		1	1	1	1	MRL
8260B/5035 +O	<u>(YGENATES (EF</u>	PA 8260B/5035)	(continued)			
Dichlorodifluoron 1,1-Dichloroetha 1,2-Dichloroetha trans-1,2-Dichloro cis-1,2-Dichloroe 1,1-Dichloroethyl 2,2-Dichloroprop 1,3-Dichloroprop trans-1,3-Dichlor 1,1-Dichloroprop cis-1,3-Dichlorop Diisopropyl ether	nethane (R12) ne ne (EDC) oethylene hthylene lene ane ane ane opropylene ylene ropylene t (DIPE)	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
Ethylbenzene Ethyl-tert-Butyl E Hexachlorobutac 2-Hexanone (MB Isopropylbenzene 4-Isopropylbenzene Methyl-tert-Butyl Methylene Chlori 4-Methyl-2-penta Naphthalene n-Propylbenzene Styrene 1,1,1,2-Tetrachlo	ther (ETBE) liene 3K) e Ether (MTBE) de none (MIBK)	2.0 <5.0 <50 <5.0 <5.0 <50 <50 <50 <50 <50 <5.0 <5.	<2.0 <5.0 <10 <50 <5.0 <5.0 <50 <50 <50 <50 <5.0 <5.	<2.0 <5.0 <50 <5.0 <5.0 <50 <50 <50 <10 <5.0 <5.0 <5.0 <5.0 <5.0	<2.0 <5.0 <10 <50 <5.0 <5.0 <50 <50 <50 <10 <5.0 <5.0 <5.0 <5.0 <5.0	2.0 5.0 10 50 5.0 5.0 5.0 50 50 10 5.0 5.0 5.0 5.0 5.0

A

Viorel Vasile Operations Manager

Client: Project No: Project Name: Method:	Ramboll (Irvine 1690011671 Watt Expositior VOCs & OXYG) N ENATES by GC/	/MS EPA 5035		AA Project No Date Received Date Reported Units	b: A598262 d: 12/19/19 d: 01/03/20 :: ug/kg
Date Sampled:		12/18/19	12/18/19	12/18/19	12/18/19	
Date Prepared:		12/26/19	12/26/19	12/26/19	12/26/19	
Date Analyzed:		12/26/19	12/26/19	12/26/19	12/26/19	
AA ID No:		9L19006-01	9L19006-02	9L19006-03	9L19006-04	
Client ID No:		3510-SB-1-12'	3510-SB-1-20'	3510-SB-2-10'	3510-SB-2-19'	
Matrix:		Soil	Soil	Soil	Soil	
Dilution Factor:	:	1	1	1	1	MRL
8260B/5035 +O	<u>XYGENATES (E</u>	PA 8260B/5035)	(continued)			
1,1,2,2-Tetrachlo	proethane	<5.0	<5.0	<5.0	<5.0	5.0
Tetrachloroethyle	ene (PCE)	<5.0	<5.0	<5.0	<5.0	5.0
Toluene		13	<2.0	<2.0	<2.0	2.0
1,2,4-Trichlorobe	enzene	<5.0	<5.0	<5.0	<5.0	5.0
1,2,3-Trichlorobe	enzene	<5.0	<5.0	<5.0	<5.0	5.0
1,1,2-Trichloroet	hane	<5.0	<5.0	<5.0	<5.0	5.0
1,1,1-Trichloroet	hane	<5.0	<5.0	<5.0	<5.0	5.0
Trichloroethylene	e (TCE)	<5.0	<5.0	<5.0	<5.0	5.0
Trichlorofluorom	ethane (R11)	<5.0	<5.0	<5.0	<5.0	5.0
1,2,3-Trichloropr	opane	<5.0	<5.0	<5.0	<5.0	5.0
1,1,2-Trichloro-1 ane (R113)	,2,2-trifluoroeth	<5.0	<5.0	<5.0	<5.0	5.0
1,3,5-Trimethylb	enzene	<5.0	<5.0	<5.0	<5.0	5.0
1,2,4-Trimethylb	enzene	<5.0	<5.0	<5.0	<5.0	5.0
Vinyl chloride		<5.0	<5.0	<5.0	<5.0	5.0
o-Xylene		<2.0	<2.0	<2.0	<2.0	2.0
m,p-Xylenes		2.6	<2.0	<2.0	<2.0	2.0
Surrogates						%REC Limits
4-Bromofluorobe	enzene	97%	94%	94%	95%	76-177
Dibromofluorom	ethane	106%	109%	108%	107%	85-152
Toluene-d8		97%	98%	100%	98%	86-137

Ą

Viorel Vasile Operations Manager

Client:	Ramboll (Irvine)	1			AA Project N	o: A598262
Project No:	1690011671 Watt Exposition				Date Receive	d: 12/19/19 d: 01/02/20
Method:	Carbon Chain h					u. 01/03/20
Method.		y 00/112			Units	. mg/kg
Date Sampled:		12/18/19	12/18/19	12/18/19	12/18/19	
Date Prepared:		12/31/19	12/31/19	12/31/19	12/31/19	
Date Analyzed:		12/31/19	12/31/19	12/31/19	12/31/19	
AA ID No:		9L19006-01	9L19006-02	9L19006-03	9L19006-04	
Client ID No:		3510-SB-1-12'	3510-SB-1-20'	3510-SB-2-10'	3510-SB-2-19'	
Matrix:		Soil	Soil	Soil	Soil	
Dilution Factor	:	1	1	1	1	MRL
Carbon Chain (Characterization	8015M (EPA 80	<u>)15M)</u>			
C6-C8		<1.0	<1.0	<1.0	<1.0	1.0
C8-C10		<1.0	<1.0	<1.0	<1.0	1.0
C10-C12		<1.0	<1.0	<1.0	<1.0	1.0
C12-C14		<1.0	<1.0	<1.0	<1.0	1.0
C14-C16		<1.0	<1.0	<1.0	<1.0	1.0
C16-C18		<1.0	<1.0	<1.0	<1.0	1.0
C18-C20		<1.0	<1.0	<1.0	<1.0	1.0
C20-C22		<1.0	<1.0	<1.0	<1.0	1.0
C22-C24		<1.0	<1.0	<1.0	<1.0	1.0
C24-C26		<1.0	<1.0	<1.0	<1.0	1.0
C26-C28		<1.0	<1.0	<1.0	<1.0	1.0
C28-C32		<1.0	<1.0	<1.0	<1.0	1.0
C32-C34		<1.0	<1.0	<1.0	<1.0	1.0
C34-C36		<1.0	<1.0	<1.0	<1.0	1.0
C36-C40		<1.0	<1.0	<1.0	<1.0	1.0
C40-C44		<1.0	<1.0	<1.0	<1.0	1.0
TPH (C6-C44)		<10	<10	<10	<10	10
Surrogates						%REC Limits
o-Terphenyl		96%	105%	106%	106%	50-150

Ą

Viorel Vasile Operations Manager

Client: Project No: Project Name: Method:	Ramboll (Irvine) 1690011671 Watt Exposition Total Metals CAI	W 17			AA Project N Date Receive Date Reporte Units	o: A598262 d: 12/19/19 d: 01/03/20 s: mg/kg
Date Sampled:		12/18/19	12/18/19	12/18/19	12/18/19	
Date Prepared:		12/20/19	12/20/19	12/20/19	12/20/19	
Date Analyzed:		12/23/19	12/23/19	12/23/19	12/23/19	
AA ID No:		9L19006-01	9L19006-02	9L19006-03	9L19006-04	
Client ID No:		3510-SB-1-12'	3510-SB-1-20'	3510-SB-2-10'	3510-SB-2-19'	
Matrix:		Soil	Soil	Soil	Soil	
Dilution Factor:		1	1	1	1	MRL
CAM Metals Les	s Hg 6000/7000	<u>(EPA 6010B/70</u>	<u>00)</u>			
Antimony		<10	<10	<10	<10	10
Arsenic		<0.50	<0.50	0.98	<0.50	0.50
Barium		150	150	120	130	10
Beryllium		<1.0	<1.0	<1.0	<1.0	1.0
Cadmium		<1.0	<1.0	<1.0	<1.0	1.0
Chromium		18	12	13	15	3.0
Cobalt		8.8	5.6	7.8	7.7	3.0
Copper		14	<3.0	<3.0	<3.0	3.0
Lead		3.8	<3.0	<3.0	<3.0	3.0
Molybdenum		<5.0	<5.0	<5.0	<5.0	5.0
Nickel		12	6.0	8.8	9.3	3.0
Selenium		<0.50	<0.50	<0.50	<0.50	0.50
Silver		<1.0	<1.0	<1.0	<1.0	1.0
Thallium		<5.0	<5.0	<5.0	<5.0	5.0
Vanadium		46	35	39	40	10
Zinc		44	25	37	34	3.0

Ą

Viorel Vasile Operations Manager

Client:	Ramboll (Irvine)
Project No:	1690011671
Project Name:	Watt Exposition

AA Project No: A598262 **Date Received:** 12/19/19 **Date Reported:** 01/03/20

Analyte	R Result	eporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
OCs & OXYGENATES by GC/MS	EPA 5035	- Quality C	Control							<u></u>
Batch B9L2603 - EPA 5035										
Blank (B9L2603-BLK1)				Prepare	d & Anal	vzed: 12	2/26/19			
Acetone	<100	100	ua/ka			,				
tert-Amyl-Methyl Ether (TAME)	<5.0	5.0	ug/kg							
Benzene	<2.0	2.0	ug/kg							
Bromobenzene	<5.0	5.0	ug/kg							
Bromochloromethane	<5.0	5.0	ug/kg							
Bromodichloromethane	<5.0	5.0	ug/kg							
Bromoform	<5.0	5.0	ug/kg							
Bromomethane	<5.0	5.0	ug/kg							
2-Butanone (MEK)	<50	50	ug/kg							
tert-Butyl Alcohol (TBA)	<50	50	ug/kg							
sec-Butylbenzene	<5.0	5.0	ug/kg							
tert-Butylbenzene	<5.0	5.0	ug/kg							
n-Butylbenzene	<5.0	5.0	ug/kg							
Carbon Disulfide	<5.0	5.0	ug/kg							
Carbon Tetrachloride	<5.0	5.0	ug/kg							
Chlorobenzene	<5.0	5.0	ug/kg							
Chloroethane	<5.0	5.0	ug/kg							
Chloroform	<5.0	5.0	ug/kg							
Chloromethane	<5.0	5.0	ug/kg							
2-Chlorotoluene	<5.0	5.0	ug/kg							
4-Chlorotoluene	<5.0	5.0	ug/kg							
1,2-Dibromo-3-chloropropane	<10	10	ug/kg							
Dibromochloromethane	<5.0	5.0	ug/kg							
1,2-Dibromoethane (EDB)	<5.0	5.0	ug/kg							
Dibromomethane	<5.0	5.0	ug/kg							
1,4-Dichlorobenzene	<5.0	5.0	ug/kg							
1,3-Dichlorobenzene	<5.0	5.0	ug/kg							
1,2-Dichlorobenzene	<5.0	5.0	ug/kg							
Dichlorodifluoromethane (R12)	<5.0	5.0	ug/kg							
1,1-Dichloroethane	<5.0	5.0	ug/kg							
1,2-Dichloroethane (EDC)	<5.0	5.0	ug/kg							
trans-1,2-Dichloroethylene	<5.0	5.0	ug/kg							

A

Viorel Vasile Operations Manager

LABORATORY ANALYSIS RESULTS

Client: Project No: Project Name:	Ramboll (Irvine) 1690011671 Watt Exposition						A Da Da	A Projec ate Rece ate Repo	t No: A ived: 1 orted: 0	.598262 2/19/19 1/03/20	
Analyte		F Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
VOCs & OXYGEI	NATES by GC/MS	EPA 5035	- Quality C	Control							
Batch B9L2603 -	EPA 5035		-								
Blank (B9L260	3-BLK1) Continue	ed			Prepare	ed & Anal	yzed: 12	2/26/19			
cis-1.2-Dichloro	ethvlene	<5.0	5.0	ua/ka	•		,				
1.1-Dichloroethy	vlene	<5.0	5.0	ua/ka							
2.2-Dichloropro	pane	<5.0	5.0	ua/ka							
1,3-Dichloropro	pane	<5.0	5.0	ug/kg							
1,2-Dichloropro	pane	<5.0	5.0	ug/kg							
trans-1,3-Dichlo	propropylene	<5.0	5.0	ug/kg							
1,1-Dichloropro	pylene	<5.0	5.0	ug/kg							
cis-1,3-Dichloro	propylene	<5.0	5.0	ug/kg							
Diisopropyl ethe	er (DIPE)	<5.0	5.0	ug/kg							
Ethylbenzene	· · ·	<2.0	2.0	ug/kg							
Ethyl-tert-Butyl I	Ether (ETBE)	<5.0	5.0	ug/kg							
Hexachlorobuta	diene	<10	10	ug/kg							
2-Hexanone (M	BK)	<50	50	ug/kg							
Isopropylbenzer	ne	<5.0	5.0	ug/kg							
4-Isopropyltolue	ene	<5.0	5.0	ug/kg							
Methyl-tert-Buty	l Ether (MTBE)	<5.0	5.0	ug/kg							
Methylene Chlo	ride	<50	50	ug/kg							
4-Methyl-2-pent	anone (MIBK)	<50	50	ug/kg							
Naphthalene		<10	10	ug/kg							
n-Propylbenzen	е	<5.0	5.0	ug/kg							
Styrene		<5.0	5.0	ug/kg							
1,1,1,2-Tetrachl	oroethane	<5.0	5.0	ug/kg							
1,1,2,2-Tetrachl	oroethane	<5.0	5.0	ug/kg							
Tetrachloroethy	lene (PCE)	<5.0	5.0	ug/kg							
Toluene		<2.0	2.0	ug/kg							
1,2,4-Trichlorob	enzene	<5.0	5.0	ug/kg							
1,2,3-Trichlorob	enzene	<5.0	5.0	ug/kg							
1,1,2-Trichloroe	thane	<5.0	5.0	ug/kg							
1,1,1-Trichloroe	thane	<5.0	5.0	ug/kg							
Trichloroethylen	ie (TCE)	<5.0	5.0	ug/kg							
Trichlorofluorom	nethane (R11)	<5.0	5.0	ug/kg							
1,2,3-Trichlorop	ropane	<5.0	5.0	ug/kg							

A

Viorel Vasile Operations Manager

Client: Project No: Project Name:	Ramboll (Irvine) 1690011671 Watt Exposition						A Da Da	A Projec ate Rece ate Repo	t No: A ived: 1 orted: 0	598262 2/19/19 1/03/20	
Ameliate		R	Reporting	Unito	Spike	Source		%REC	חחם	RPD Limit	Notoc
Analyte		Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
OCs & OXYGE	NATES by GC/MS I	EPA 5035	- Quality	Control							
Batch B9L2603 -	EPA 5035										
Blank (B9L260	3-BLK1) Continue	b			Prepare	ed & Analg	yzed: 12	2/26/19			
1,1,2-Trichloro- (R113)	1,2,2-trifluoroethane	e <5.0	5.0	ug/kg							
1,3,5-Trimethylb	benzene	<5.0	5.0	ug/kg							
1,2,4-Trimethylb	benzene	<5.0	5.0	ug/kg							
Vinyl chloride		<5.0	5.0	ug/kg							
o-Xylene		<2.0	2.0	ug/kg							
m,p-Xylenes		<2.0	2.0	ug/kg							
Surrogate: 4-Br	omofluorobenzene	91.9		ug/kg	100		91.9	76-177			
Surrogate: Dibr	omofluoromethane	93.9		ug/kg	100		93.9	85-152			
Surrogate: Tolu	ene-d8	97.9		ug/kg	100		97.9	86-137			
LCS (B9L2603-	·BS1)				Prepare	ed & Anal	yzed: 12	2/26/19			
Acetone	,	37.3	100	ug/kg	40		93.2	43-164			
tert-Amyl-Methy	I Ether (TAME)	33.6	5.0	ug/kg	40		84.1	48-141			
Benzene		44.8	2.0	ug/kg	40		112	75-125			
Bromobenzene		40.4	5.0	ug/kg	40		101	70-130			
Bromochlorome	ethane	38.8	5.0	ug/kg	40		96.9	66-130			
Bromodichloron	nethane	40.2	5.0	ug/kg	40		100	62-125			
Bromoform		35.7	5.0	ug/kg	40		89.2	69-137			
Bromomethane		34.5	5.0	ug/kg	40		86.2	50-132			
2-Butanone (ME	EK)	33.1	50	ug/kg	40		82.8	46-160			
tert-Butyl Alcoho	ol (TBA)	128	50	ug/kg	200		63.9	70-130			QL-02
sec-Butylbenzer	ne	41.3	5.0	ug/kg	40		103	68-127			
tert-Butylbenzer	ne	40.1	5.0	ug/kg	40		100	65-137			
n-Butylbenzene		40.6	5.0	ug/kg	40		102	71-128			
Carbon Disulfide	e	45.7	5.0	ug/kg	40		114	56-130			
Carbon Tetrach	loride	42.6	5.0	ug/kg	40		106	54-124			
Chlorobenzene		40.2	5.0	ug/kg	40		101	70-120			
Chloroethane		41.3	5.0	ug/kg	40		103	55-136			
Chloroform		42.9	5.0	ug/kg	40		107	63-119			
Chloromethane		34.1	5.0	ug/kg	40		85.3	42-126			
2-Chlorotoluene)	40.7	5.0	ug/kg	40		102	74-124			

A

Viorel Vasile Operations Manager

Ramboll (Irvine)

Client:

AA Project No: A598262

Project No: 1690011671 Date Received: 12/19/19 Project Name: Watt Exposition Date Reported: 01/03/20 %REC RPD Reporting Spike Source Units Level Result %REC Limits RPD Limit Notes Analyte Result Limit VOCs & OXYGENATES by GC/MS EPA 5035 - Quality Control Batch B9L2603 - EPA 5035 LCS (B9L2603-BS1) Continued Prepared & Analyzed: 12/26/19 40.3 5.0 101 4-Chlorotoluene 40 78-125 ug/kg 1,2-Dibromo-3-chloropropane 31.0 10 ug/kg 40 77.6 71-157 Dibromochloromethane 36.1 5.0 ug/kg 40 90.2 75-125 5.0 1,2-Dibromoethane (EDB) 36.8 ug/kg 40 92.0 74-134 5.0 93.6 Dibromomethane 37.4 ug/kg 40 58-135 39.5 5.0 98.7 76-121 1,4-Dichlorobenzene ug/kg 40 1,3-Dichlorobenzene 40.1 5.0 40 100 79-122 ug/kg 5.0 1,2-Dichlorobenzene 39.2 40 98.1 82-125 ug/kg 5.0 42.4 Dichlorodifluoromethane (R12) 16.9 ug/kg 40 22-133 44.1 5.0 110 55-126 1,1-Dichloroethane ug/kg 40 1,2-Dichloroethane (EDC) 38.3 5.0 ug/kg 40 95.8 49-129 5.0 trans-1,2-Dichloroethylene 42.6 40 106 70-121 ug/kg cis-1,2-Dichloroethylene 41.7 5.0 104 69-124 ug/kg 40 41.6 5.0 40 104 1,1-Dichloroethylene ug/kg 65-121 5.0 2.2-Dichloropropane 32.7 ug/kg 40 81.7 70-130 1,3-Dichloropropane 37.8 5.0 40 94.4 76-123 ug/kg 5.0 111 1,2-Dichloropropane 44.4 ug/kg 40 66-133 trans-1,3-Dichloropropylene 34.6 5.0 40 86.4 71-119 ug/kg 1,1-Dichloropropylene 43.9 5.0 110 64-123 ug/kg 40 5.0 cis-1,3-Dichloropropylene 40.1 ug/kg 40 100 71-133 41.0 5.0 103 Diisopropyl ether (DIPE) ug/kg 40 58-131 2.0 40.8 102 Ethylbenzene ug/kg 40 69-120 Ethyl-tert-Butyl Ether (ETBE) 35.9 5.0 ug/kg 40 89.8 46-143 88.4 Hexachlorobutadiene 35.4 10 ug/kg 40 60-139 2-Hexanone (MBK) 30.6 50 76.4 48-156 ug/kg 40 5.0 105 Isopropylbenzene 42.2 ug/kg 40 70-125 39.0 5.0 97.4 4-Isopropyltoluene 71-126 ug/kg 40 Methyl-tert-Butyl Ether (MTBE) 71.8 5.0 80 89.8 75-125 ug/kg Methylene Chloride 41.6 50 ug/kg 40 104 54-128 33.9 50 84.6 4-Methyl-2-pentanone (MIBK) 40 62-167 ug/kg Naphthalene 38.1 10 95.2 72-164 ug/kg 40 5.0 108 n-Propylbenzene 43.3 ug/kg 40 70-127

A

Viorel Vasile Operations Manager

Client: Project No: Project Name:	Ramboll (Irvine) 1690011671 Watt Exposition						AA Projec Date Rece Date Repo	t No: A ived: 1 orted: 0	598262 2/19/19 1/03/20	
Analyte		R Result	Reporting Limit	Units	Spike Level	Source Result %RE	%REC C Limits	RPD	RPD Limit	Notes
VOCs & OXYGE	NATES by GC/MS	EPA 5035	- Quality (Control						
Batch B9L2603 -	EPA 5035		-							
LCS (B9L2603-	BS1) Continued				Prepare	ed & Analyzed:	12/26/19			
Styrene	,	39.3	5.0	ug/kg	40	98.3	74-114			
1,1,1,2-Tetrachl	oroethane	37.5	5.0	ug/kg	40	93.7	71-121			
1,1,2,2-Tetrachl	oroethane	35.7	5.0	ug/kg	40	89.2	71-140			
Tetrachloroethy	lene (PCE)	39.3	5.0	ug/kg	40	98.3	58-126			
Toluene	× ,	40.2	2.0	ug/kg	40	100	70-118			
1,2,4-Trichlorob	enzene	38.4	5.0	ug/kg	40	96.0	77-135			
1,2,3-Trichlorob	enzene	38.7	5.0	ug/kg	40	96.8	77-140			
1,1,2-Trichloroe	thane	36.7	5.0	ug/kg	40	91.8	72-131			
1,1,1-Trichloroe	thane	42.5	5.0	ug/kg	40	106	57-122			
Trichloroethylen	e (TCE)	42.1	5.0	ug/kg	40	105	69-119			
Trichlorofluorom	nethane (R11)	39.4	5.0	ug/kg	40	98.6	60-129			
1,2,3-Trichlorop	ropane	36.6	5.0	ug/kg	40	91.4	60-138			
1,1,2-Trichloro- (R113)	1,2,2-trifluoroethan	e 44.5	5.0	ug/kg	40	111	51-134			
1,3,5-Trimethylk	benzene	40.1	5.0	ug/kg	40	100	73-121			
1,2,4-Trimethylk	benzene	39.9	5.0	ug/kg	40	99.8	74-124			
Vinyl chloride		37.5	5.0	ug/kg	40	93.8	50-131			
o-Xylene		39.3	2.0	ug/kg	40	98.3	74-114			
m,p-Xylenes		80.5	2.0	ug/kg	80	101	70-117			
Surrogate: 4-Br	omofluorobenzene	95.2		ug/kg	100	95.2	76-177			
Surrogate: Dibr	omofluoromethane	95.8		ug/kg	100	95.8	85-152			
Surrogate: Tolu	ene-d8	98.3		ug/kg	100	98.3	86-137			
LCS Dup (B9L	2603-BSD1)			00	Prepare	ed & Analyzed:	12/26/19			
Acetone	,	47.5	100	ua/ka	40	119	43-164	24.2	30	
tert-Amyl-Methy	I Ether (TAME)	40.9	5.0	ug/kg	40	102	48-141	19.4	30	
Benzene	()	47.6	2.0	ug/kg	40	119	75-125	6.11	30	
Bromobenzene		38.8	5.0	ug/kg	40	97.1	70-130	3.89	30	
Bromochlorome	ethane	44.2	5.0	ug/ka	40	111	66-130	13.2	30	
Bromodichloron	nethane	46.4	5.0	ug/kg	40	116	62-125	14.3	30	
Bromoform		40.5	5.0	ug/kg	40	101	69-137	12.5	30	
Bromomethane		36.4	5.0	ug/kg	40	90.9	50-132	5.37	30	

Ą

Viorel Vasile Operations Manager

Client:Ramboll (Irvine)Project No:1690011671Project Name:Watt Exposition

AA Project No: A598262 Date Received: 12/19/19 Date Reported: 01/03/20

Analvte	F Result	Reporting Limit	Units	Spike Level	Source Result %REC	%REC Limits	RPD	RPD Limit	Notes
VOCs & OXYGENATES by GC/MS	SEPA 5035	- Quality (Control				-		
Batch B9I 2603 - EPA 5035		suanty C							
LCS Dup (B9I 2603-BSD1) Cont	inued			Prenare	d & Analyzed: 1	2/26/19			
2-Butanone (MEK)		50	ua/ka	1100010	112	46-160	20.0	30	
tert-Butyl Alcohol (TBA)	213	50	ug/kg ug/kg	200	106	70-130	29.9 50.0	30	
sec-Buty/benzene	40 5	50	ug/kg	40	100	68-127	1 76	30	
tert-Butylbenzene	38.5	5.0	ug/kg	40	96.2	65-137	4 02	30	
n-Butylbenzene	41 4	5.0	ug/kg	40	103	71-128	1.85	30	
Carbon Disulfide	45.9	5.0	ug/kg	40	115	56-130	0.437	30	
Carbon Tetrachloride	44.2	5.0	ua/ka	40	110	54-124	3 69	30	
Chlorobenzene	40.0	5.0	ua/ka	40	100	70-120	0.598	30	
Chloroethane	43.4	5.0	ua/ka	40	109	55-136	4.91	30	
Chloroform	48.2	5.0	ua/ka	40	120	63-119	11.6	30	QL-03
Chloromethane	32.3	5.0	ua/ka	40	80.8	42-126	5.42	30	
2-Chlorotoluene	39.5	5.0	ua/ka	40	98.7	74-124	3.04	30	
4-Chlorotoluene	39.1	5.0	ua/ka	40	97.6	78-125	3.17	30	
1.2-Dibromo-3-chloropropane	38.9	10	ug/kg	40	97.2	71-157	22.5	30	
Dibromochloromethane	39.3	5.0	ug/kg	40	98.2	75-125	8.49	30	
1,2-Dibromoethane (EDB)	40.5	5.0	ug/kg	40	101	74-134	9.42	30	
Dibromomethane	46.1	5.0	ug/kg	40	115	58-135	20.7	30	
1,4-Dichlorobenzene	38.5	5.0	ug/kg	40	96.3	76-121	2.46	30	
1,3-Dichlorobenzene	39.0	5.0	ug/kg	40	97.6	79-122	2.78	30	
1,2-Dichlorobenzene	40.4	5.0	ug/kg	40	101	82-125	3.01	30	
Dichlorodifluoromethane (R12)	14.3	5.0	ug/kg	40	35.8	22-133	16.6	30	
1,1-Dichloroethane	47.9	5.0	ug/kg	40	120	55-126	8.35	30	
1,2-Dichloroethane (EDC)	46.5	5.0	ug/kg	40	116	49-129	19.3	30	
trans-1,2-Dichloroethylene	44.9	5.0	ug/kg	40	112	70-121	5.22	30	
cis-1,2-Dichloroethylene	44.1	5.0	ug/kg	40	110	69-124	5.59	30	
1,1-Dichloroethylene	41.2	5.0	ug/kg	40	103	65-121	1.06	30	
2,2-Dichloropropane	34.0	5.0	ug/kg	40	85.0	70-130	3.96	30	
1,3-Dichloropropane	42.7	5.0	ug/kg	40	107	76-123	12.3	30	
1,2-Dichloropropane	48.3	5.0	ug/kg	40	121	66-133	8.33	30	
trans-1,3-Dichloropropylene	40.2	5.0	ug/kg	40	101	71-119	15.1	30	
1,1-Dichloropropylene	46.5	5.0	ug/kg	40	116	64-123	5.71	30	
cis-1,3-Dichloropropylene	46.1	5.0	ug/kg	40	115	71-133	13.9	30	

A

Viorel Vasile Operations Manager

L

Client: Project No: Project Name:	Ramboll (Irvine) 1690011671 Watt Exposition	AA Project No: A598262 Date Received: 12/19/19 Date Reported: 01/03/20							598262 2/19/19 1/03/20		
Analyte		Result	Reporting	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	NATES by CC/MS			Control							
Potoh POL 2602	EDA 5025	EFA 3035	- Quanty (Sontroi							
I CS Dup (Bal 1	2603-BSD1) Conti	nued			Prenare	d & Analy	20d · 12	0/26/19			
Diisopropyl ethe		48.6	5.0	ua/ka	1100010		122	58-131	16.0	30	
Ethylbonzono		40.0	2.0	ug/kg	40		101	60-120	0.640	30	
Ethyl-tert-Butyl I	Ether (ETRE)	46.3	5.0	ug/kg ug/kg	40		116	46-143	25.3	30	
Hexachlorobuta	diene	37.0	10	ug/kg	40		92.6	60-139	4 58	30	
2-Hexanone (M	BK)	39.2	50	ug/kg	40		98.0	48-156	24 7	30	
Isopropylbenzer	ne	41.4	5.0	ug/kg	40		104	70-125	1 77	30	
4-Isopropyltolue	ene	39.8	5.0	ua/ka	40		99.6	71-126	2.18	30	
Methyl-tert-Buty	l Ether (MTBE)	93.8	5.0	ua/ka	80		117	75-125	26.5	30	
Methylene Chlo	ride	44.3	50	ua/ka	40		111	54-128	6.42	30	
4-Methyl-2-pent	anone (MIBK)	42.3	50	ua/ka	40		106	62-167	22.2	30	
Naphthalene	()	44.4	10	ua/ka	40		111	72-164	15.4	30	
n-Propylbenzen	е	41.0	5.0	ua/ka	40		102	70-127	5.65	30	
Styrene		41.4	5.0	ug/kg	40		104	74-114	5.25	30	
1,1,1,2-Tetrachl	oroethane	39.0	5.0	ug/kg	40		97.6	71-121	4.08	30	
1,1,2,2-Tetrachl	oroethane	44.2	5.0	ug/kg	40		110	71-140	21.3	30	
Tetrachloroethy	lene (PCE)	37.8	5.0	ug/kg	40		94.5	58-126	3.94	30	
Toluene	, , , , , , , , , , , , , , , , , , ,	39.5	2.0	ug/kg	40		98.8	70-118	1.61	30	
1,2,4-Trichlorob	enzene	39.9	5.0	ug/kg	40		99.6	77-135	3.68	30	
1,2,3-Trichlorob	enzene	42.3	5.0	ug/kg	40		106	77-140	8.88	30	
1,1,2-Trichloroe	thane	43.8	5.0	ug/kg	40		110	72-131	17.7	30	
1,1,1-Trichloroe	thane	43.1	5.0	ug/kg	40		108	57-122	1.35	30	
Trichloroethylen	ie (TCE)	44.2	5.0	ug/kg	40		110	69-119	4.87	30	
Trichlorofluorom	nethane (R11)	41.9	5.0	ug/kg	40		105	60-129	5.95	30	
1,2,3-Trichlorop	ropane	41.5	5.0	ug/kg	40		104	60-138	12.6	30	
1,1,2-Trichloro- (R113)	1,2,2-trifluoroethan	e 45.8	5.0	ug/kg	40		115	51-134	2.88	30	
1,3,5-Trimethylb	benzene	39.9	5.0	ug/kg	40		99.8	73-121	0.450	30	
1,2,4-Trimethylk	benzene	40.0	5.0	ug/kg	40		100	74-124	0.200	30	
Vinyl chloride		36.3	5.0	ug/kg	40		90.8	50-131	3.25	30	
o-Xylene		40.4	2.0	ug/kg	40		101	74-114	2.76	30	
m,p-Xylenes		80.6	2.0	ug/kg	80		101	70-117	0.0248	30	

A

Viorel Vasile Operations Manager

Client: Project No: Project Name:	Ramboll (Irvine) 1690011671 Watt Exposition						A Da Da	A Projec ate Rece ate Repo	t No: A ived: 1: rted: 0	598262 2/19/19 1/03/20	
Analyte		F Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
VOCs & OXYGEN	ATES by GC/MS	EPA 5035	- Quality (Control							
Batch B9L2603 -	EPA 5035										
LCS Dup (B9L2	603-BSD1) Contii	nued			Prepare	d & Anal	yzed: 12	2/26/19			
Surrogate: 4-Bro	mofluorobenzene	97.0		ug/kg	100		97.0	76-177			
Surrogate: Dibro	mofluoromethane	108		ug/kg	100		108	85-152			
Surrogate: Tolue	ne-d8	96.1		ug/kg	100		96.1	86-137			
Carbon Chain by	GC/FID - Quality	Control									
Batch B9L3111 - I	EPA 3550B										
Blank (B9L3111	-BLK1)				Prepare	d & Anal	yzed: 12	2/31/19			
C6-C8		<1.0	1.0	mg/kg							
C8-C10		<1.0	1.0	mg/kg							
C10-C12		<1.0	1.0	mg/kg							
C12-C14		<1.0	1.0	mg/kg							
C14-C16		<1.0	1.0	mg/kg							
C16-C18		<1.0	1.0	mg/kg							
C18-C20		<1.0	1.0	mg/kg							
C20-C22		<1.0	1.0	mg/kg							
C22-C24		<1.0	1.0	mg/kg							
024-026		<1.0	1.0	mg/kg							
		<1.0	1.0	mg/kg							
C_{20}		<1.0	1.0	mg/kg							
C34-C36		<1.0	1.0	mg/kg							
C36-C40		<1.0	1.0	ma/ka							
C40-C44		<1.0	1.0	ma/ka							
TPH (C6-C44)		<10	10	mg/kg							
Surrogate: o-Ter	phenyl	11.6		mg/kg	10		116	50-150			
LCS Dup (B9L3	111-BSD1)			00	Prepare	d & Anal	yzed: 12	2/31/19			
Diesel Range Or	ganics as Diesel	220	10	mg/kg	200		110	75-125	14.5	40	
Surrogate: o-Ter	phenyl	10.5		mg/kg	10		105	50-150			
Matrix Spike (B	9L3111-MS1)	S	ource: 9L2	20004-04	Prepare	d & Anal	yzed: 12	2/31/19			
Diesel Range Or	ganics as Diesel	241	10	mg/kg	200		121	70-130			
Surrogate: o-Ter	phenyl	13.1		mg/kg	10		131	50-150			

Ą

Viorel Vasile Operations Manager

Client: Project No: Project Name:	Ramboll (Irvine) 1690011671 Watt Exposition						A Da Da	A Projec ate Rece ate Repo	t No: A ived: 12 orted: 0	598262 2/19/19 1/03/20	
Analyte		F Result	Reporting	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Carbon Chain by	GC/FID - Quality	Control	2								
Batch B9L3111 -	EPA 3550B	••••••									
Matrix Spike D	up (B9L3111-MSD	1) S	ource: 9L2	0004-04	Prepare	d & Anal	vzed: 12	2/31/19			
Diesel Range O	rganics as Diesel	243	10	mg/kg	200		122	70-130	0.719	40	
Surrogate: o-Te	rnhenvl	13.2		ma/ka	10		132	50-150			
Total Metals CAN	/ 17 - Quality Con	trol		ing/ng	10		102	00 100			
Batch BOI 2012 -	EDA 2050B										
Blank (BOL 2012 -					Droporo	d. 12/20	10 100	luzod 10	0/22/10		
	2-DLN1)	~10	10	malka	Flepale	u. 12/20/	T9 Alla	iyzeu. 12	2/23/19		
Anumony		<0.50	0.50	mg/kg							
Barium		<10	10	ma/ka							
BervIlium		<1.0	1.0	ma/ka							
Cadmium		<1.0	1.0	ma/ka							
Chromium		<3.0	3.0	ma/ka							
Cobalt		<3.0	3.0	mg/kg							
Copper		<3.0	3.0	mg/kg							
Lead		<3.0	3.0	mg/kg							
Molybdenum		<5.0	5.0	mg/kg							
Nickel		<3.0	3.0	mg/kg							
Selenium		<0.50	0.50	mg/kg							
Silver		<1.0	1.0	mg/kg							
Thallium		<5.0	5.0	mg/kg							
Vanadium		<10	10	mg/kg							
Zinc		<3.0	3.0	mg/kg	_						
LCS (B9L2012-	BS1)				Prepare	ed: 12/20/	19 Ana	lyzed: 12	2/23/19		
Antimony		52.9	10	mg/kg	50		106	90-121			
Arsenic		53.3	0.50	mg/kg	50		107	88-115			
Barium		51.4	10	mg/kg	50		103	88-114			
Beryllium		59.3	1.0	mg/kg	50		119	91-124			
Cadmium		60.0 55.0	1.0	mg/kg	50 50		120	88-120			
Cobolt		57.0 57.4	3.U 3.0	mg/kg	50		115	00-114			
Copper		57.4 /8/	3.0	mg/kg	50		96.7	91-11/ 85-115			
Lead		-0. 4 53.2	3.0	ma/ka	50		106	80-117			
		00.2	0.0	iiig/kg	50		100	00 117			

Ą

Viorel Vasile Operations Manager

Page 17 of 20

LABORATORY ANALYSIS RESULTS

Client:Ramboll (Irvine)Project No:1690011671Project Name:Watt Exposition

AA Project No: A598262 Date Received: 12/19/19 Date Reported: 01/03/20

Analyte	F Result	Reporting Limit	Units	Spike Level	Source Result %RE	%REC C Limits	RPD	RPD Limit	Notes
Total Metals CAM 17 - Quality Con	trol								
Batch B9L2012 - FPA 3050B									
LCS (B9I 2012-BS1) Continued				Prepare	d 12/20/19 A	halvzed: 1:	2/23/19		
Molybdenum	56.5	5.0	ma/ka	50	11.9	91-124	_, _ 0, 10		
Nickel	58.0	3.0	ma/ka	50	116	88-116			
Selenium	51.9	0.50	ma/ka	50	104	90-124			
Silver	49.1	1.0	mg/ka	50	98.3	88-115			
Thallium	55.4	5.0	mg/ka	50	111	82-134			
Vanadium	54.3	10	mg/kg	50	109	92-116			
Zinc	60.0	3.0	mg/kg	50	120	91-127			
LCS Dup (B9L2012-BSD1)				Prepare	d: 12/20/19 A	nalyzed: 12	2/23/19		
Antimony	53.0	10	mg/kg	50	106	90-121	0.321	20	
Arsenic	52.8	0.50	mg/kg	50	106	88-115	1.02	20	
Barium	51.2	10	mg/kg	50	102	88-114	0.371	20	
Beryllium	59.1	1.0	mg/kg	50	118	91-124	0.321	20	
Cadmium	60.0	1.0	mg/kg	50	120	88-120	0.00	20	
Chromium	55.5	3.0	mg/kg	50	111	88-114	0.162	20	
Cobalt	57.3	3.0	mg/kg	50	115	91-117	0.192	20	
Copper	48.5	3.0	mg/kg	50	97.0	85-115	0.351	20	
Lead	53.4	3.0	mg/kg	50	107	89-117	0.394	20	
Molybdenum	57.3	5.0	mg/kg	50	115	91-124	1.35	20	
Nickel	58.0	3.0	mg/kg	50	116	88-116	0.00	20	
Selenium	51.2	0.50	mg/kg	50	102	90-124	1.24	20	
Silver	48.9	1.0	mg/kg	50	97.8	88-115	0.510	20	
Thallium	55.3	5.0	mg/kg	50	111	82-134	0.163	20	
Vanadium	54.4	10	mg/kg	50	109	92-116	0.110	20	
Zinc	60.0	3.0	mg/kg	50	120	91-127	0.00	20	
Duplicate (B9L2012-DUP1)	S	ource: 9L1	9006-04	Prepare	d: 12/20/19 A	nalyzed: 12	2/23/19		
Antimony	<10	10	mg/kg		<10			40	
Arsenic	<0.50	0.50	mg/kg		<0.50			40	
Barium	96.5	10	mg/kg		128		28.3	40	
Beryllium	<1.0	1.0	mg/kg		<1.0			40	
Cadmium	<1.0	1.0	mg/kg		<1.0			40	
Chromium	12.2	3.0	mg/kg		14.6		18.0	40	

A

Viorel Vasile Operations Manager

Client:Ramboll (Irvine)Project No:1690011671Project Name:Watt Exposition

AA Project No: A598262 Date Received: 12/19/19 Date Reported: 01/03/20

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Total Metals CAM 17 - Quality Cont	rol		-	-	-				-	-
Batch B9L2012 - EPA 3050B										
Duplicate (B9L2012-DUP1) Conti	nued S	ource: 9L1	9006-04	Prepare	d: 12/20/	19 Ana	lyzed: 12	2/23/19		
Cobalt	7.09	3.0	ma/ka		7.69		<u> </u>	8.12	40	
Copper	<3.0	3.0	ma/ka		<3.0			_	40	
Lead	<3.0	3.0	mg/kg		<3.0				40	
Molybdenum	<5.0	5.0	mg/kg		<5.0				40	
Nickel	8.30	3.0	mg/kg		9.27			11.0	40	
Selenium	<0.50	0.50	mg/kg		<0.50				40	
Silver	<1.0	1.0	mg/kg		<1.0				40	
Thallium	<5.0	5.0	mg/kg		<5.0				40	
Vanadium	35.1	10	mg/kg		40.1			13.5	40	
Zinc	32.9	3.0	mg/kg		33.6			2.07	40	
Matrix Spike (B9L2012-MS1)	S	Source: 9L1	9007-07	Prepare	d: 12/20/	19 Ana	lyzed: 12	2/23/19		
Antimony	26.9	10	mg/kg	50		53.8	22-76			
Arsenic	44.0	0.50	mg/kg	50	1.81	84.3	78-112			
Barium	145	10	mg/kg	50	84.9	120	40-161			
Beryllium	47.0	1.0	mg/kg	50		94.0	83-118			
Cadmium	43.0	1.0	mg/kg	50		86.1	61-96			
Chromium	60.2	3.0	mg/kg	50	12.0	96.4	81-115			
Cobalt	50.4	3.0	mg/kg	50	5.36	90.0	80-109			
Copper	52.2	3.0	mg/kg	50		104	75-125			
Lead	46.1	3.0	mg/kg	50		92.2	70-129			
Molybdenum	48.6	5.0	mg/kg	50		97.1	87-119			
Nickel	54.7	3.0	mg/kg	50	10.6	88.2	75-106			
Selenium	31.9	0.50	mg/kg	50		63.8	63-107			
Silver	47.7	1.0	mg/kg	50		95.4	87-119			
Thallium	32.8	5.0	mg/kg	50		65.6	47-129			
Vanadium	78.4	10	mg/kg	50	28.3	100	84-125			
Zinc	71.4	3.0	mg/kg	50	23.5	95.8	71-126			
Matrix Spike Dup (B9L2012-MSD	1) S	Source: 9L1	9007-07	Prepare	d: 12/20/	19 Ana	lyzed: 12	2/23/19		
Antimony	27.0	10	mg/kg	50		54.1	22-76	0.482	40	
Arsenic	44.8	0.50	mg/kg	50	1.81	85.9	78-112	1.83	40	
Barium	163	10	mg/kg	50	84.9	157	40-161	11.9	40	

A

Viorel Vasile Operations Manager

Client:	Ramboll (Irvine)
Project No:	1690011671
Project Name:	Watt Exposition

AA Project No:	A598262
Date Received:	12/19/19
Date Reported:	01/03/20

										-
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Total Metals CAM 17 - Quality Cont	rol									
Batch B9L2012 - EPA 3050B										
Matrix Spike Dup (B9L2012-MSD Continued	1)	Source: 9L1	9007-07	Prepare	ed: 12/20/′	19 Ana	lyzed: 12	2/23/19		
Beryllium	47.6	1.0	mg/kg	50		95.2	83-118	1.21	40	
Cadmium	42.6	1.0	mg/kg	50		85.3	61-96	0.934	40	
Chromium	62.5	3.0	mg/kg	50	12.0	101	81-115	3.68	40	
Cobalt	50.8	3.0	mg/kg	50	5.36	91.0	80-109	0.968	40	
Copper	54.6	3.0	mg/kg	50		109	75-125	4.53	40	
Lead	46.7	3.0	mg/kg	50		93.4	70-129	1.31	40	
Molybdenum	49.2	5.0	mg/kg	50		98.5	87-119	1.39	40	
Nickel	55.0	3.0	mg/kg	50	10.6	88.7	75-106	0.492	40	
Selenium	31.6	0.50	mg/kg	50		63.2	63-107	1.01	40	
Silver	48.9	1.0	mg/kg	50		97.8	87-119	2.42	40	
Thallium	33.2	5.0	mg/kg	50		66.4	47-129	1.15	40	
Vanadium	81.8	10	mg/kg	50	28.3	107	84-125	4.30	40	
Zinc	73.4	3.0	mg/kg	50	23.5	99.8	71-126	2.73	40	

A

Viorel Vasile Operations Manager

Client:	Ramboll (Irvine)	AA Project No: A598262
Project No:	1690011671	Date Received: 12/19/19
Project Name:	Watt Exposition	Date Reported: 01/03/20

Special Notes

[1] = QL-02 : The recovery for this analyte is outside of the acceptance control limits for the LCS. The data was validated based on the acceptable recovery for this analyte in the LCSD.

[2] = QL-03 : The recovery for this analyte is outside of the acceptance control limits for the LCSD. The data was validated based on the acceptable recovery for this analyte in the LCS.

A

Viorel Vasile Operations Manager

AMERICAN ANALYTICS AMERICAN A	NALYT 9765 ETON Tel: 811	ICS C N AVE., C 8-998-5547	HAIN HATSWO / FAX: 8	-OF-CU RTH, CA 9 18-998-7258	(STOD) 1311	Y REC	ORD		A	Ссос №:: 19547 70056976 Радеof
client: Ramboll	Project Na	me / No.:	Watt	Expos	sition	<u>ــــــــــــــــــــــــــــــــــــ</u>	Sa	impler's	Name: 📐	Dismon
Project Manager: Rebeken Well	Site	Address:	3510	Expos	tion 1	BIND	Samp	er's Sig	nature:	
Phone: (213) 943-6321		City:	105	Andel	25			P.	<u> 0. No.:</u>)
Fax:	St	ate & Zip:	CA	· · · ·				Quo	te No.:	
TAT Turnaround Codes ** ① = Same Day Rush ④ = 72 Hour Rush ② = 24 Hour Rush ⑤ = 5 Day Rush ③ = 48 Hour Rush X = 10 Working Days (Standard TAT)									Special Instructions	
Client I.D.	Date	Time	Sample Matrix	No. / 2 of Cont/ F	7 F7 2 Nease enter	the TAT Tu	iriqaroun	d Codes	** below	
3510-58-47-12 9L 19006 - 01	12/18/19	1030	S	AX	XX		\square	<u> </u>	-1	* NO MERCURY
<u>3510-58-21-20 -02</u>		1040		1313	X X	<u> </u>	LД	<u>58</u>	, +1	•
3510-58-8-10 -05	<u> </u>	1130			$\times \times$		/+	728	-2.	
2 10		1140								VV.V Perg.D.
				<u> </u>				\downarrow		
								-	SAMPLE	INTEGRITY
				+						YN TEMP
	-							\rightarrow		· · · · · · · · · · · · · · · · · · ·
									\mathbf{N}	Frankland Street
			·.							······································
For Laboratory Use			Reli	nquished by	> >	Date 12/19/	19.1	Time		Received by
Date 2/20/19 Time 0820	Q-		Reli	nquished by	* ***********************************	Date		Time		Received by
IAI <u>N Days Sign:</u> A.A. Project No.: p. 318262 /9L19006			Reli	nquished by		Date		Time		Received by
Note: By relinquishing samples to American Analytics, client age Payment for services is due within 30 days from the date of invo	rees to pay for the	he services : will be dispo	requested or sed of after	n this chain of 45 days follow	custody form a	and any additi	onal client	-requester	d analyses perf	ormed on this project.

5000

Payment for services is due within 30 days from the date of invoice. Sample(s) will be disposed of after 45 days following the submittal of the sample(s) to American Analytics.

Client: Client Address:	Ramboll Environ 5 Park Plaza, Suite 500 Irvine, 92614	Report date: Jones Ref. No.: Client Ref. No.:	1/2/2020 G-0057 1690011671
Attn:	Jennifer Dishon	Date Sampled:	1/2/2020
		Date Received:	1/2/2020
Project:	Watt Exposition	Date Analyzed:	1/2/2020
Project Address:	3606 Exposition Blvd & 3510 Exposition Blvd	Physical State:	Soil Gas
-	Los Angeles, CA		

ANALYSES REQUESTED

1. EPA 8260B – Volatile Organics by GC/MS + Oxygenates

A tracer gas mixture of n-pentane, n-hexane, and n-heptane was placed at the tubing-surface interface before sampling. These compounds were analyzed during the 8260B analytical run to determine if there were surface leaks into the subsurface due to improper installation of the probe. No tracer was detected in any of the samples reported herein.

The sampling rate was approximately 200 cc/min, except when noted differently on the chain of custody record, using a glass gas-tight syringe. Purging was completed using a pump set at approximately 200 cc/min, except when noted differently on the chain of custody record. A default of 3 purge volumes was used as recommended by July 2015 DTSC/RWQCB guidance documents.

Prior to purging and sampling of soil gas at each point, a shut-in test was conducted to check for leaks in the above ground fittings. The shut-in test was performed on the above ground apparatus by evacuating the line to a vacuum of 100 inches of water, sealing the entire system and watching the vacuum for at least one minute. A vacuum gauge attached in parallel to the apparatus measured the vacuum. If there was any observable loss of vacuum, the fittings were adjusted as needed until the vacuum did not change noticeably. The soil gas sample was then taken.

No flow conditions occur when a sampling rate greater than 10 mL/min cannot be maintained without applying a vacuum greater than 100 inches of water to the sampling train. The sampling train is left at a vacuum for no less than three minutes. If the vacuum does not subside appreciably after three minutes, the sample location is determined to be a no flow sample.

Analytical – Soil Gas samples were analyzed using EPA Method 8260 that includes extra compounds required by DTSC/RWQCB (such as Freon 113). Instrument Continuing Calibration Verification, QC Reference Standards, Instrument Blanks and Sampling Blanks were analyzed every 12 hours as prescribed by the method. In addition, a Laboratory Control Sample (LCS) and Laboratory Control Sample Duplicate (LCSD) were analyzed with each batch of Soil Gas samples. A duplicate/replicate sample was analyzed each day of the sampling activity. All samples were injected into the GC/MS system within 30 minutes of sampling.

Approval:

Steve Jones, Ph.D. Laboratory Manager

Client:	Ramboll Env	iron				Report date:	1/2/2020
Client Address:	5 Park Plaza,	Suite 500				Jones Ref. No.:	G-0057
	Irvine, 92614	Ļ				Client Ref. No.:	1690011671
Attn:	Jennifer Dish	ion				Date Sampled:	1/2/2020
						Date Received:	1/2/2020
Project.	Watt Exposit	ion				Date Analyzed:	1/2/2020
	2606 Exposit	ion Dlud & C	510 Expositio	n Dlyd		Date Analyzeu. Dhygical Stata	1/2/2020
Project Address:			510 Expositio	DII DIVU		Flysical State:	Soli Gas
	Los Angeles,	CA					
	EPA 82	60B – Volati	ile Organics b	y GC/MS +	Oxygenates		
Sample ID:	3606-SV-1-5'	3606-SV-1- 15'	3606-SV-2-5'	3606-SV-2- 15'	3606-SV-3-5'		
Jones ID:	G-0057-01	G-0057-02	G-0057-03	G-0057-04	G-0057-05	Reporting Limit	<u>Units</u>
Analytes:							
Benzene	ND	ND	ND	ND	ND	8	µg/m3
Bromobenzene	ND	ND	ND	ND	ND	8	µg/m3
Bromodichloromethane	ND	ND	ND	ND	ND	8	µg/m3
Bromoform	ND	ND	ND	ND	ND	8	µg/m3
n-Butylbenzene	ND	ND	ND	ND	ND	12	µg/m3
sec-Butylbenzene	ND	ND	ND	ND	ND	12	µg/m3
tert-Butylbenzene	ND	ND	ND	ND	ND	12	µg/m3
Carbon tetrachloride	ND	ND	ND	ND	ND	8	µg/m3
Chlorobenzene	ND	ND	ND	ND	ND	8	µg/m3
Chloroform	ND	ND	ND	ND	ND	8	µg/m3
2-Chlorotoluene	ND	ND	ND	ND	ND	12	µg/m3
4-Chlorotoluene	ND	ND	ND	ND	ND	12	µg/m3
Dibromochloromethane	ND	ND	ND	ND	ND	8	µg/m3
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	8	µg/m3
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	8	µg/m3
Dibromomethane	ND	ND	ND	ND	ND	8	μg/m3
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
Dichlorodifluoromethane	ND	ND	ND	ND	ND	8	μg/m3
1,1-Dichloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dichloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,1-Dichloroethene	ND	ND	ND	ND	ND	8	μg/m3
c1s-1,2-Dichloroethene	ND	ND	ND	ND	ND	8	µg/m3
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	8	µg/m3
1,2-Dichloropropane	ND	ND	ND	ND	ND	8	µg/m3
1,3-Dichloropropane	ND	ND	ND	ND	ND	8	µg/m3
2,2-Dichloropropane	ND	ND	ND	ND	ND	16	µg/m3
1,1-Dichloropropene	ND	ND	ND	ND	ND	10	µg/m3

EPA 8260B – Volatile Organics by GC/MS + Oxygenates

Sample ID:	3606-SV-1-5'	3606-SV-1- 15'	3606-SV-2-5'	3606-SV-2- 15'	3606-SV-3-5'		
Jones ID:	G-0057-01	G-0057-02	G-0057-03	G-0057-04	G-0057-05	Reporting Limit	<u>Units</u>
Analytes:							
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	µg/m3
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	µg/m3
Ethylbenzene	ND	ND	ND	ND	ND	8	µg/m3
Freon 113	ND	ND	ND	ND	ND	16	µg/m3
Hexachlorobutadiene	ND	ND	ND	ND	ND	24	µg/m3
Isopropylbenzene	ND	ND	ND	ND	ND	8	µg/m3
4-Isopropyltoluene	ND	ND	ND	ND	ND	8	µg/m3
Methylene chloride	ND	ND	ND	ND	ND	8	µg/m3
Naphthalene	ND	ND	ND	ND	ND	40	µg/m3
n-Propylbenzene	ND	ND	ND	ND	ND	8	µg/m3
Styrene	ND	ND	ND	ND	ND	8	µg/m3
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	8	µg/m3
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	16	µg/m3
Tetrachloroethene	9	10	13	13	ND	8	µg/m3
Toluene	ND	ND	ND	12	54	8	µg/m3
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	16	µg/m3
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	16	µg/m3
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	8	µg/m3
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	8	µg/m3
Trichloroethene	ND	12	ND	40	ND	8	µg/m3
Trichlorofluoromethane	ND	ND	ND	ND	ND	16	µg/m3
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	8	µg/m3
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	8	µg/m3
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	8	µg/m3
Vinyl chloride	ND	ND	ND	ND	ND	8	µg/m3
m,p-Xylene	ND	ND	ND	ND	ND	16	µg/m3
o-Xylene	ND	ND	ND	ND	ND	8	µg/m3
MTBE	ND	ND	ND	ND	ND	40	µg/m3
Ethyl-tert-butylether	ND	ND	ND	ND	ND	40	µg/m3
Di-isopropylether	ND	ND	ND	ND	ND	40	µg/m3
tert-amylmethylether	ND	ND	ND	ND	ND	40	µg/m3
tert-Butylalcohol	ND	ND	ND	ND	ND	400	µg/m3
Tracer:							
n-Pentane	ND	ND	ND	ND	ND	80	µg/m3
n-Hexane	ND	ND	ND	ND	ND	80	µg/m3
n-Heptane	ND	ND	ND	ND	ND	80	μg/m3
Dilution Factor	1	1	1	1	1		
Surrogate Recoveries:						<u>QC Limi</u>	ts
Dibromofluoromethane	113%	109%	109%	111%	114%	60 - 140)
Toluene-d ₈	104%	102%	96%	102%	100%	60 - 140)
4-Bromofluorobenzene	102%	99%	98%	104%	155%@	60 - 140)
Rotah ID:	G1-010220-	G1-010220-	G1-010220-	G1-010220-	G1-010220-		
Datell ID.	02	02	02	02	02		

ND = Value below reporting limit

@= Surrogate outside acceptable limits. All other QC parameters in control, therefore data was accepted.

Client:	Ramboll En	viron				Report date:	1/2/2020
Client Address:	5 Park Plaza	. Suite 500				Jones Ref. No.:	G-0057
	Irvine, 9261	4				Client Ref. No.:	1690011671
	11,1110, 9201						10,00110,1
Attn.	Jennifer Dis	hon				Date Sampled:	1/2/2020
Attil.	Jemmer Dis	non				Date Bacoivod	1/2/2020
D	Wett Francis	4				Date Received:	1/2/2020
Project:	wall Exposi		510 5	D1 1		Date Analyzed:	1/2/2020
Project Address:	3606 Exposi	tion Blvd & 3	510 Expositi	on Blvd		Physical State:	Soil Gas
	Los Angeles	, CA					
	EPA 82	260B – Volati	le Organics	by GC/MS +	Oxygenates		
	2606 SV 2		2510 537 4 5				
<u>Sample ID:</u>	3000-3 V-3- 15'	3510-SV-4-5'	5510-5V-4-5 DFD	3510-SV-5-5'	3510-SV-6-5	,	
	15		NE I				
Jones ID:	G-0057-06	G-0057-07	G-0057-08	G-0057-09	G-0057-10	D // T //	T T •/
						Reporting Limit	Units
Analytes:				ND	ND	0	1 2
Benzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Bromobenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Bromodichloromethane	ND	ND	ND	ND	ND	8	μg/m3
Bromotorm	ND	ND	ND	ND	ND	8	μg/m3
n-Butylbenzene	ND	ND	ND	ND	ND	12	μg/m3
sec-Butylbenzene	ND	ND	ND	ND	ND	12	μg/m3
tert-Butylbenzene	ND	ND	ND	ND	ND	12	μg/m3
Carbon tetrachloride	ND	ND	ND	ND	ND	8	μg/m3
Chlorobenzene	ND	ND	ND	ND	ND	8	$\mu g/m3$
Chloroform	ND	ND	ND	ND	ND	8	$\mu g/m3$
2-Chlorotoluene	ND	ND	ND	ND	ND	12	μg/m3
4-Chlorotoluene	ND	ND	ND	ND	ND	12	μg/m3
Dibromochloromethane	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	8	µg/m3
Dibromomethane	ND	ND	ND	ND	ND	8	µg/m3
1,2- Dichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
Dichlorodifluoromethane	ND	ND	ND	ND	ND	8	μg/m3
1,1-Dichloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,2-Dichloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,1-Dichloroethene	ND	ND	ND	ND	ND	8	µg/m3
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	8	μg/m3
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	8	µg/m3
1,2-Dichloropropane	ND	ND	ND	ND	ND	8	µg/m3
1,3-Dichloropropane	ND	ND	ND	ND	ND	8	µg/m3
2,2-Dichloropropane	ND	ND	ND	ND	ND	16	µg/m3
1,1-Dichloropropene	ND	ND	ND	ND	ND	10	μg/m3

EPA 8260B – Volatile Organics by GC/MS + Oxygenates

Sample ID:	3606-SV-3- 15'	3510-SV-4-5'	3510-SV-4-5' REP	3510-SV-5-5'	3510-SV-6-5'		
Jones ID:	G-0057-06	G-0057-07	G-0057-08	G-0057-09	G-0057-10	Reporting Limit	<u>Units</u>
Analytes:							
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	μg/m3
trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	8	μg/m3
Ethylbenzene	ND	ND	ND	ND	ND	8	μg/m3
Freon 113	ND	ND	ND	ND	ND	16	μg/m3
Hexachlorobutadiene	ND	ND	ND	ND	ND	24	μg/m3
Isopropylbenzene	ND	ND	ND	ND	ND	8	μg/m3
4-Isopropyltoluene	ND	ND	ND	ND	ND	8	µg/m3
Methylene chloride	ND	ND	ND	ND	ND	8	μg/m3
Naphthalene	ND	ND	ND	ND	ND	40	μg/m3
n-Propylbenzene	ND	ND	ND	ND	ND	8	μg/m3
Styrene	ND	ND	ND	ND	ND	8	μg/m3
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	16	μg/m3
Tetrachloroethene	8	1570	1550	41	18	8	μg/m3
Toluene	ND	ND	ND	ND	ND	8	μg/m3
1,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
1,2,4-Trichlorobenzene	ND	ND	ND	ND	ND	16	μg/m3
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	8	μg/m3
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	8	μg/m3
Trichloroethene	ND	22	13	ND	ND	8	μg/m3
Trichlorofluoromethane	ND	ND	ND	ND	ND	16	μg/m3
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	8	μg/m3
1,2,4-Trimethylbenzene	16	ND	ND	ND	ND	8	μg/m3
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	8	μg/m3
Vinyl chloride	ND	ND	ND	ND	ND	8	μg/m3
m,p-Xylene	42	ND	ND	ND	ND	16	μg/m3
o-Xylene	18	ND	ND	ND	ND	8	μg/m3
MTBE	ND	ND	ND	ND	ND	40	μg/m3
Ethyl-tert-butylether	ND	ND	ND	ND	ND	40	μg/m3
Di-isopropylether	ND	ND	ND	ND	ND	40	μg/m3
tert-amylmethylether	ND	ND	ND	ND	ND	40	μg/m3
tert-Butylalcohol	ND	ND	ND	ND	ND	400	µg/m3
Tracer:							
n-Pentane	ND	ND	ND	ND	ND	80	μg/m3
n-Hexane	ND	ND	ND	ND	ND	80	µg/m3
n-Heptane	ND	ND	ND	ND	ND	80	µg/m3
Dilution Factor	1	1	1	1	1		
Surrogate Recoveries:						<u>QC Limi</u>	ts
Dibromofluoromethane	114%	109%	114%	110%	112%	60 - 140	
Toluene-d ₈	102%	98%	101%	103%	103%	60 - 140	
4-Bromofluorobenzene	104%	98%	102%	101%	101%	60 - 140	
Batch ID:	G1-010220-	G1-010220-	G1-010220-	G1-010220-	G1-010220-		
	02	02	02	02	02		

ND = Value below reporting limit

Client:	Ramboll Environ	Report date:	1/2/2020
Client Address:	5 Park Plaza, Suite 500	Jones Ref. No.:	G-0057
	Irvine, 92614	Client Ref. No.:	1690011671
Attn:	Jennifer Dishon	Date Sampled:	1/2/2020
		Date Received:	1/2/2020
Project:	Watt Exposition	Date Analyzed:	1/2/2020
Project Address:	3606 Exposition Blvd & 3510 Exposition Blvd	Physical State:	Soil Gas
	Los Angeles, CA	J	
	EPA 8260B – Volatile Organics by GC/MS + Oxygenates		
<u>Sample ID:</u>	3510-SV-7-5'		
Jones ID:	G-0057-11	ъ <i>(</i> ; т. ; ,	T T •4
Analytes:		<u>Reporting Limit</u>	Units
Benzene	ND	8	ug/m3
Bromobenzene	ND	8	ug/m3
Bromodichloromethane	ND	8	$\mu g/m3$
Bromoform	ND	8	μg/m3
n-Butylbenzene	ND	12	μg/m3
sec-Butylbenzene	ND	12	μg/m3
tert-Butylbenzene	ND	12	µg/m3
Carbon tetrachloride	ND	8	μg/m3
Chlorobenzene	ND	8	µg/m3
Chloroform	ND	8	µg/m3
2-Chlorotoluene	ND	12	µg/m3
4-Chlorotoluene	ND	12	µg/m3
Dibromochloromethane	ND	8	μg/m3
1,2-Dibromo-3-chloropropane	ND	8	μg/m3
1,2-Dibromoethane (EDB)	ND	8	µg/m3
Dibromomethane	ND	8	µg/m3
1,2- Dichlorobenzene	ND	16	μg/m3
1,3-Dichlorobenzene	ND	16	$\mu g/m3$
1,4-Dichlorobenzene	ND	16	μg/m3
	ND	8	$\mu g/m3$
1,1-Dichloroethane	ND	8	$\mu g/m3$
1,2-Dichloroethane	ND	8	$\mu g/m3$
1,1-Dichloroethene		8	$\mu g/m_3$
trans 1.2 Dishlaroothara		ð 8	µg/m3
1.2 Dichloropropono		0 0	μg/m2
1.2-Dichloropropane		ð	$\mu g/m_{2}$
2.2 Dichloropropane	ND	0 16	μg/1115 μg/m3
1 1-Dichloropropene	ND	10	με/1113 μα/m3
r, i Diemoropropene		10	$\mu_{\rm B}$ ms

EPA 8260B – Volatile Organics by GC/MS + Oxygenates

Jones ID:	G-0057-11	Reporting Limit	Units
Analytes:			<u>e 1116</u>
cis-1,3-Dichloropropene	ND	8	µg/m3
trans-1,3-Dichloropropene	ND	8	µg/m3
Ethylbenzene	ND	8	µg/m3
Freon 113	ND	16	μg/m3
Hexachlorobutadiene	ND	24	µg/m3
Isopropylbenzene	ND	8	µg/m3
4-Isopropyltoluene	ND	8	µg/m3
Methylene chloride	ND	8	μg/m3
Naphthalene	ND	40	µg/m3
n-Propylbenzene	ND	8	$\mu g/m3$
Styrene	ND	8	$\mu g/m3$
1,1,1,2-Tetrachloroethane	ND	8	$\mu g/m3$
1,1,2,2-Tetrachloroethane	ND	16	$\mu g/m3$
Tetrachloroethene	37	8	$\mu g/m3$
Toluene	22	8	μg/m3
1,2,3-Trichlorobenzene	ND	16	$\mu g/m3$
1,2,4-Trichlorobenzene	ND	16	$\mu g/m3$
1,1,1-Trichloroethane	ND	8	$\mu g/m3$
1,1,2-Trichloroethane	ND	8	$\mu g/m3$
Trichloroethene	ND	8	$\mu g/m3$
Trichlorofluoromethane	ND	16	$\mu g/m3$
1,2,3-Trichloropropane	ND	8	$\mu g/m3$
1.2.4-Trimethylbenzene	ND	8	$\mu g/m3$
1.3.5-Trimethylbenzene	ND	8	$\mu g/m3$
Vinvl chloride	ND	8	ug/m3
m.p-Xvlene	ND	16	ug/m3
o-Xvlene	ND	8	ug/m3
MTBE	ND	40	ug/m3
Ethvl-tert-butvlether	ND	40	ug/m3
Di-isopropylether	ND	40	ug/m3
tert-amylmethylether	ND	40	ug/m3
tert-Butylalcohol	ND	400	$\mu g/m3$
T			1.8
Tracer:	ND	80	ualm?
n-Pentane	ND	80	$\mu g/m_{3}$
n-Hexane	ND	80	$\mu g/m_{3}$
n-Heptane	ND	80	µg/m3
Dilution Factor	1		
Surrogate Recoveries:		<u>QC Limits</u>	
Dibromofluoromethane	116%	60 - 140	
Toluene-d ₈	101%	60 - 140	
4-Bromofluorobenzene	103%	60 - 140	
Batch ID:	G1-010220-		
Datell ID.	02		

ND = Value below reporting limit

02

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client:	Ramboll En	viron	Report date:	1/2/2020
Client Address:	5 Park Plaza	. Suite 500	Jones Ref. No	G-0057
	Irvine, 9261	4	Client Ref. N	n : 1690011671
	, ,			
Attn:	Jennifer Dis	hon	Date Sampled	1 : 1/2/2020
			Date Received	$d \cdot 1/2/2020$
Ducioati	Watt Exposi	tion	Date Analyza	$\frac{1}{2} \frac{1}{2020}$
			Date Allaryze	$u_{1} = \frac{1}{2}/\frac{2}{2020}$
Project Address:	3606 Exposi	tion Blvd & 3510 Expositio	on Blvd Physical State	Soll Gas
	Los Angeles	, CA		
	EPA 82	260B – Volatile Organics	by GC/MS + Oxygenates	
	METHOD	SAMPLING		
<u>Sample ID:</u>	BLANK	BLANK		
	010220-	010220-		
<u>Jones ID:</u>	G1MB1	G1SB1	Reporting Lin	nit Units
Analytes:			<u></u>	
Benzene	ND	ND	8	ug/m3
Bromobenzene	ND	ND	8	$\mu g/m3$
Bromodichloromethane	ND	ND	8	$\mu g/m3$
Bromoform	ND	ND	8	μg/m3
n-Butylbenzene	ND	ND	12	$\mu g/m3$
sec-Butylbenzene	ND	ND	12	μg/m3
tert-Butylbenzene	ND	ND	12	μg/m3
Carbon tetrachloride	ND	ND	8	$\mu g/m3$
Chlorobenzene	ND	ND	8	μg/m3
Chloroform	ND	ND	8	µg/m3
2-Chlorotoluene	ND	ND	12	µg/m3
4-Chlorotoluene	ND	ND	12	µg/m3
Dibromochloromethane	ND	ND	8	µg/m3
1,2-Dibromo-3-chloropropane	ND	ND	8	μg/m3
1,2-Dibromoethane (EDB)	ND	ND	8	µg/m3
Dibromomethane	ND	ND	8	µg/m3
1,2- Dichlorobenzene	ND	ND	16	µg/m3
1,3-Dichlorobenzene	ND	ND	16	μg/m3
1,4-Dichlorobenzene	ND	ND	16	μg/m3
Dichlorodifluoromethane	ND	ND	8	µg/m3
1,1-Dichloroethane	ND	ND	8	µg/m3
1,2-Dichloroethane	ND	ND	8	µg/m3
1,1-Dichloroethene	ND	ND	8	µg/m3
cis-1,2-Dichloroethene	ND	ND	8	µg/m3
trans-1,2-Dichloroethene	ND	ND	8	µg/m3
1,2-Dichloropropane	ND	ND	8	µg/m3
1,3-Dichloropropane	ND	ND	8	µg/m3
2,2-Dichloropropane	ND	ND	16	µg/m3
1,1-Dichloropropene	ND	ND	10	μg/m3

Sample ID:	METHOD BLANK	SAMPLING BLANK		
Jones ID:	010220- G1MB1	010220- G1SB1	Reporting Limit	<u>Units</u>
Analytes:				
cis-1,3-Dichloropropene	ND	ND	8	µg/m3
trans-1,3-Dichloropropene	ND	ND	8	µg/m3
Ethylbenzene	ND	ND	8	µg/m3
Freon 113	ND	ND	16	μg/m3
Hexachlorobutadiene	ND	ND	24	µg/m3
Isopropylbenzene	ND	ND	8	μg/m3
4-Isopropyltoluene	ND	ND	8	μg/m3
Methylene chloride	ND	ND	8	$\mu g/m3$
Naphthalene	ND	ND	40	μg/m3
n-Propylbenzene	ND	ND	8	$\mu g/m3$
Styrene	ND	ND	8	μg/m3
1,1,1,2-Tetrachloroethane	ND	ND	8	μg/m3
1,1,2,2-Tetrachloroethane	ND	ND	16	$\mu g/m3$
Tetrachloroethene	ND	ND	8	$\mu g/m3$
Toluene	ND	ND	8	$\mu g/m3$
1.2.3-Trichlorobenzene	ND	ND	16	ug/m3
1.2.4-Trichlorobenzene	ND	ND	16	ug/m3
1.1.1-Trichloroethane	ND	ND	8	$\mu g/m3$
1.1.2-Trichloroethane	ND	ND	8	$\mu g/m3$
Trichloroethene	ND	ND	8	ug/m3
Trichlorofluoromethane	ND	ND	16	$\mu g/m3$
1.2.3-Trichloropropane	ND	ND	8	$\mu g/m3$
1.2.4-Trimethylbenzene	ND	ND	8	$\mu g/m3$
1.3.5-Trimethylbenzene	ND	ND	8	ug/m3
Vinyl chloride	ND	ND	8	ug/m3
m p-Xylene	ND	ND	16	ug/m3
o-Xvlene	ND	ND	8	110/m3
MTBE	ND	ND	40	μg/m3
Fthyl-tert-butylether	ND	ND	40	μg/m3
Di-isopropylether	ND	ND	40	μg/m3
tert-amylmethylether	ND	ND	40	μg/m3
tert-Butylalcohol	ND	ND	400	μg/m3
Tracer:				
n-Pentane	ND	ND	80	μg/m3
n-Hexane	ND	ND	80	μg/m3
n-Heptane	ND	ND	80	µg/m3
Dilution Factor	1	1		
Surrogate Recoveries:			<u>QC Lim</u>	<u>its</u>
Dibromofluoromethane	112%	115%	60 - 140	0
Toluene-d ₈	125%	101%	60 - 140	0
4-Bromofluorobenzene	74%	103%	60 - 140	C
Batch ID:	G1-010220-	G1-010220-		
	02	02		

EPA 8260B – Volatile Organics by GC/MS + Oxygenates

ND = Value below reporting limit

 714-449-9937
 11007 FOREST PLACE

 562-646-1611
 SANTA FE SPRINGS, CA 90670

 805-399-0060
 WWW.JONESENV.COM

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client:	Ramboll Environ	Report date: 1/2/2020
Client Address:	5 Park Plaza, Suite 500	Jones Ref. No.: G-0057
	Irvine, 92614	Client Ref. No.: 1690011671
Attn:	Jennifer Dishon	Date Sampled: 1/2/2020
		Date Received: 1/2/2020
Project:	Watt Exposition	Date Analyzed: 1/2/2020
Project Address:	3606 Exposition Blvd. & 3510 Exposition Blvd.	Physical State: Soil Gas
-	Los Angeles, CA	

EPA 8260B - Volatile Organics by GC/MS + Oxygenates

Batch ID:	G1-010220-02					
Jones ID:	010220-G1LCS1	010220-G1LCSD1		01	10220-G1CC	V1
	LCS	LCSD		Acceptability		Acceptability
Parameter	Recovery (%)	Recovery (%)	<u>RPD</u>	Range (%)	<u>CCV</u>	Range (%)
Vinyl chloride	92%	92%	0.1%	60 - 140	96%	80 - 120
1,1-Dichloroethene	110%	107%	3.0%	60 - 140	103%	80 - 120
Cis-1,2-Dichloroethene	122%	121%	0.6%	70 - 130	104%	80 - 120
1,1,1-Trichloroethane	118%	118%	0.1%	70 - 130	107%	80 - 120
Benzene	119%	119%	0.1%	70 - 130	109%	80 - 120
Trichloroethene	106%	111%	4.6%	70 - 130	104%	80 - 120
Toluene	133% ²	119%	10.8%	70 - 130	120%	80 - 120
Tetrachloroethene	117%	109%	6.8%	70 - 130	110%	80 - 120
Chlorobenzene	124%	112%	10.3%	70 - 130	113%	80 - 120
Ethylbenzene	$132\%^{2}$	114%	14.5%	70 - 130	119%	80 - 120
1,2,4 Trimethylbenzene	119%	111%	7.0%	70 - 130	122% ¹	80 - 120
Surrogate Recovery:						
Dibromofluoromethane	110%	115%		60 - 140	110%	60 - 140
Toluene-d ₈	104%	98%		60 - 140	104%	60 - 140
4-Bromofluorobenzene	109%	103%		60 - 140	108%	60 - 140

¹= Recovery outside acceptable limits. LCS/LCSD recoveries and RPD were within QC limits, therefore data was accepted.

²=Recovery outside acceptable limits. CCV and LCS/LCSD RPD were within QC limits, therefore data was accepted.

LCS = Laboratory Control Sample

LCSD = Laboratory Control Sample Duplicate

CCV = Continuing Calibration Verification

RPD = Relative Percent Difference; Acceptability range for RPD is $\leq 20\%$

and accurate.			Time			Date			Company		Time		Date		отралу
ed, and the information provided herein is correct	ackno				1 Name	Printe			Laboratory Signature			ne	Printed Nan		tepresentative Signature
innahure on this Chain of Custorly form constitutes	Client ei		Time		2/2020	Date 1/		, INC.	JONES ENVIRONMENTAL	3	10:	2	1/2/1		Vamboll
stal Number of Containers	10 To			TOOLE	ISE O'T	ANNAL		Tome	Laboratory Signature	B	Dish	Ren .	SUUU	8	
		â		×	SG	100.155	GOOSE.1 M	200	G-0057-10	10:14	10:13	1/2/20	1630	ω	3510-SV-6-5
	-	2		×	SG	100.155	GOOSE.1 M	200 0	G-0057-09	09:56	9:50	1/2/20	1630	ω	3510-SV-5-5'
	-	თ		×	SG	100.155	GOOSE.1 M	200 0	G-0057-08	09:40	09:33	1/2/20	1630	ω	3510-SV-4-5' REP
	-	თ		×	SG	100.155	GOOSE.1 M	200 (G-0057-07	09:25	9:23	1/2/20	1630	ω	3510-SV-4-5'
	-	10		×	SG	S 118001	IACKSON.1 TS	200 1	G-0057-06	08:52	8:42	1/2/20	1790	ω	3606-SV-3-15'
	-	â		×	SG	100.155	300SE.1 M	200 (G-0057-05	08:35	08:31	1/2/20	1630	ω	3606-SV-3-5'
		28		×	SG	S 118001	JACKSON.1 TS	200 ,	G-0057-04	08:18	08:08	1/2/20	1790	ω	3606-SV-2-15'
	-	2		×	SG	100.155	GOOSE.1 M	200 (G-0057-03	08:01	07:57	1/2/20	1630	ω	3606-SV-2-5'
1	-	10		×	SG	S 118001	JACKSON.1 TS	200	G-0057-02	07:43	07:34	1/2/20	1790	ω	3606-SV-1-15'
1	-	<2		×	SG	100.155	GOOSE.1 M	200	G-0057-01	07:26	07:19	1/20/20	1630	ω	3606-SV-1-5
Notes & Special Instructions	Number	Magneh		EPA 826	Soil Gas (S	lagnehelic	Pump Used N	Purge Rate (mL/min)	Laboratory Sample ID	Sample Analysis Time	Sample Collection Time	Date	Purge Volume (mL)	Purge Number	Sample ID
	of Cont	elic Vac		SOB (VC	G), Air (A)	Units	MDL* hese limits	_ow Level* urcharge for th	Standard		bole	se O'To	Annali		Jennifer Dishon
GASTIGHT GLASS SYRINGE If different than above, see Notes.	ainers	uum (In		DCs)), Material () Limits	 Mobile Lab Reporting 						bone
1 of 2 Sample Container:	a.	/H ₂ O)	52		M)	Vichohol	 n-hexane n-heptane lsopropyl / 1,1-DFA 		Rush 24 Hours Rush 48 Hours Normal						Email
Page	-	sted	sis Reque	nalys	-⊳	¥	Trace	luested	Turn Around Rec			on Blvd	cpositic	3510 Ex	3606 Exposition Blvd &
G-0057			*Global ID		z	Test Y	Shut-In	71	Client Project # 16900116						Project Name
LAB USE ONLY Jones Project #	ns harge	Option Surch	Report EDD EDF* - 10%		10P	e Number: P	Purg		Date 1/2/2020						Client Ramboll Environ
ustody Record	0	of	hain-	0	SB	vil-G	Sc		11007 Forest Pl. Fe Springs. CA 90670 (714) 449-9937 Fax (714) 449-9685 www.jonesenv.com	Santa	in 👞 🧃		LENTA	RONM	J ENVI

and accurate.	- doment			e	Time			Date			Company		Time		Date		ompany
addie on this chain or custody form consumes dgement that the above analyses have been and the information provided herein is correct	acknowle	3				e	d Nam	Printe			Laboratory Signature			ne	Printed Nan		representative Signature
ture on this Chain of Custorly form constitutes	ant sinns	2		¢	Tim		2/2020	Date 1/		L, INC.	JONES ENVIRONMENTA	2	105	9	12/1C		Kamboll
Number of Containers	Total	-			m	TOOL	d Nam	ANNA		sche	Laboratory Signature	han	Ð	ter	1623	1	A CONTRACT OF THE OWNER
																	epresentative Signature
						_											
FLOW	NO	00 -	¥			•		r.	ē	ć		i.	09:15	1/2/20	,		3510-SV-4-15'
FLOW	NO	00	×			1	1	ı	1	1		a.	9:35	1/2/20	r.	r	3510-SV-5-15'
FLOW	NO	8	×			1	1	×	i.	,		i	09:45	1/2/20		1	3510-SV-6-15'
FLOW 12	NO	8	<u>×</u>				- E		Ū.		,	1	10:00	1/2/20		i	3510-SV-7-15'
		2 1				×	SG	1100.155	GOOSE.1 N	200	G-0057-11	10:31	10:27	1/2/20	1630	ω	3510-SV-7-5'
Notes & Special Instructions		Number	Magneb			EPA 826	Soil Gas (S	Magnehelic	Pump Used	Purge Rate (mL/min)	Laboratory Sample ID	Sample Analysis Time	Sample Collection Time	Date	Purge Volume (mL)	Purge Number	Sample ID
		of Cont	elic Var			50B (VC	G), Air (A)	Units	D MDL*	Low Level* urcharge for a	□ Standard □ I *s		oole	se O'T	Annali	1	Jennifer Dishon
GASTIGHT GLASS SYRINGE If different than above, see Notes.		ainers	uum (In/H-			OCs)	, Material (M)		0 1,1-DFA	g Limits	 Normal Mobile Lab Reporting 						Phone Boost To
2 of 2 Sample Container:		<i>.</i> ,	0)					Alchohol	 n-pentan n-hexane n-heptane Isopropyl 	tion	 Immediate Atten Rush 24 Hours Rush 48 Hours Rush 72 Hours 						Los Angeles, CA ^{Email}
Page	-	be	ueste	Req	/sis	Inaly	Þ	er	Trac	quested	Turn Around Rec			on Blvc	xpositi	3510 E	3606 Exposition Blvd &
G-0057			0	Global	*0		z	Test: Y /	Shut-In	71	Client Project # 16900116						Watt Exposition
LAB USE ONLY Jones Project #	ge	tions	ort Op 10% Si	Rep DD	mm		10P	ye Number: }P □ 7P □	Pure 1P = 3		Date 1/2/202(Client Ramboll Environ Project Name
stody Record	Cu)f-(1-0	air	ĥ	0	SB	oil-Ga	S		11007 Forest Pl. Fe Springs, CA 90670 (714) 449-9937 Fax (714) 449-9685 www.jonesenv.com	Santa			AENTA	RONA	JENK